
Буферные растворы

Доц. к.х.н С.И.КУЛИЕВ

Витебск 2022

План лекции

ВГМУ

1. Буферные системы. Механизм действия буферных растворов.

2. Вычисление [H+] и pH в буферных системах

3. Характеристики буферных растворов (буферная сила, буферная емкость)

4. Буферные растворы в медицине и фармации

Актуальность

- Сохранение постоянства кислотности жидких сред имеет для жизнедеятельности человеческого организма первостепенное значение
- Даже небольшие изменения концентрации ионов водорода в крови и межтканевых жидкостях ощутимо влияют на биологическую активность ферментов и гормонов, а также на величину осмотического давления в этих жидкостях

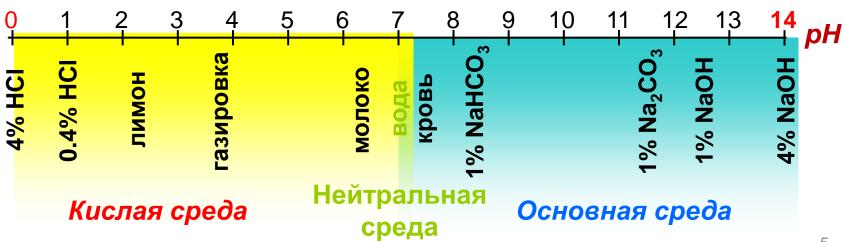
• Решающую роль в регулировании рН играют буферные системы

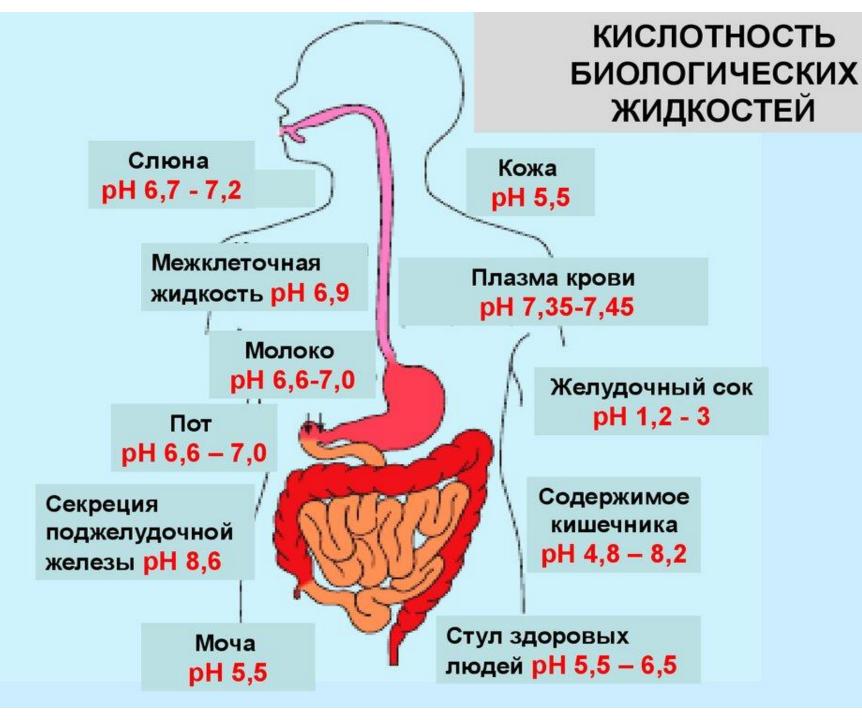
Актуальность

• Кроме того, в медицинской практике часто возникает необходимость в приготовлении буферных растворов, способных поддерживать постоянное значение рН, например,

- для введения этих растворов в организм;
- для моделирования в лабораторных условиях биопроцессов;
- в клиническом анализе и т.д.

Водородный показатель


Среда водных растворов


Фенолфталеин

Метилоранж

Лакмус

Универсальный индикатор

Значение постоянства рН в организме

Изменение активной реакции среды крови приводит к серьезным нарушениям жизнедеятельности организма

Продукты	pH
Уксус	3,0
Апельсиновый сок	2,6 - 4,4
Сок грейпфрута	3,2
Томатный сок	4,3
Яичный белок	8,0
HCI желудочного сока	0,9 – 1,1

Значение рН различных систем

Среды организма	рН
Сыворотка крови	7,36-7,44
Чистый желудочный сок	0,9
Сок поджелудочной железы	7,5-7,8
Желчь в протоках	7,4-8,5
Желчь в пузыре	5,4-6,9
Моча	4,8-7,5
Молоко	6,6-6,9
Дистиллированная вода, находящаяся в равновесии с воздухом	5,5
Морская вода	8,0
Свежий яичный белок	8,0

Значение постоянства кислотности жидких сред для жизнедеятельности человеческого организма:

- ✓ Ионы водорода оказывают каталитическое действие на многие биохимические превращения;
- ✓ Ферменты и гормоны проявляют биологическую активность только в строго определенном интервале значений рН;
- ✓ Минимальные изменения концентрации ионов водорода в крови и межтканевых жидкостях ощутимо влияют на величину осмотического давления;
- ✓ Необходимость в приготовлении буферных растворов для введения в организм, и моделирования биопроцессов.

Значение рН, благоприятные для развития патогенных бактерий

Вид бактерий	рН
Стафилококки	7,4
Стрептококки	7,4-76
Пневмококки	7,6-7,8
Менингококки	7,4-7,6
Гонококки	7,0-7,4

ЛОГИЧЕСКАЯ СТРУКТУРА РАЗДЕЛА

Расчет рН растворов

I. Сильных кислот и оснований fa ≈ 1

a)
$$HCl \to H^+ + Cl^-$$
, $[H^+] = C_H (\kappa - m\omega l)$
 $pH = -\lg [H^+] = -\lg C_H (\kappa - m\omega l)$

$$\delta$$
) $NaOH \to Na^{+} + OH^{-}$, $[OH^{-}] = C_{_{H}}($ ицел. $)$

$$pOH = -\lg [OH^-] = -\lg C_{_H}(и$$
,ел.)

$$pH = 14 - pOH$$

II. Слабых кислот и оснований

a)
$$CH_3COOH \leftrightarrow CH_3COO^- + H^+$$

 $[H^+] = C_{_H}(\kappa - m\omega) \cdot \alpha$;
 $pH = -\lg C_{_H}(\kappa - m\omega) \cdot \alpha$

$$6) NH_4OH \leftrightarrow NH_4^+ + OH^-$$

$$[OH^-] = C_{_H}(och.) \cdot \alpha$$

$$pH = 14 - pOH = 14 - (-\lg C_{H.}(ocH.) \cdot \alpha)$$

Если α неизвестно:

$$K_{ouc.} = \frac{[CH_3COO^-] \cdot [H^+]}{[CH_3COOH]}$$

$$[\mathbf{CH_3COO}^-] = [\mathbf{H}^+]$$

$$K_{ouc.} = \frac{[H^+]^2}{[CH_3COOH]};$$

$$[H^+] = \sqrt{K_{\partial} \cdot C_{\kappa-mbl}}$$

$$pH = \frac{1}{2} pK_{\partial} - \frac{1}{2} \lg C_{\kappa - m\omega};$$

$$pK_{\theta} = -\lg K_{\theta}$$

$$pOH = \frac{1}{2} pK_{och.} - \frac{1}{2} \lg C_{och}$$

В справочнике

Протолитическая теория кислот и оснований.

На практике используют показатель константы кислотности (pK_a):

$$pK_a = -lgK_a$$

ВАЖНО!!! Чем меньше значение рК_а, тем сильнее кислота.

ВАЖНО ЗНАТЬ!!!

Кислота тем слабее, чем меньше $K \partial$ и больше значение ее $pK_{I\!\!I}$.

Кислота	Кд	рК
НООС-СООН	5,7·10 ⁻²	1,25
HSO ₄ -	2,0.10-2	1,70
H ₃ PO ₄	7,6·10-3	2,12
H ₂ PO ₄ -	5,8·10-8	7,24
HPO ₄ ²⁻	3,6·10-13	12,44
HOOC-COO-	6,8·10 ⁻⁵	4,27
CH ₃ COOH	1,8·10-5	4,75
H ₂ CO ₃ (CO ₂)	4,4·10 ⁻⁷	6,36
HCO ₃ -	4,6·10-11	10,34
H ₂ S	8,0.10-8	7,10
HCN	7,0.10-10	9,16
NH ₄ ⁺	5,6 ·10 ⁻¹⁰	9,25

- Для успешного проведения реакции необходимо не только создать нужное значение рН среды, но и поддерживать его постоянным в течение реакции.
- Для этого применяются буферные растворы смеси, состоящие из слабой кислоты и ее соли или слабого основания и его соли.
- Буферные системы это растворы, способные сохранять приблизительно постоянное значение рН при добавлении к ним небольших количеств сильных кислот или оснований.
- Буферные системы содержат в соизмеряемых количествах два компонента сопряженной пары кислота-основание.

Буферные растворы

индивидуальное вещество

смесь веществ

К буферным растворам индивидуальных веществ относятся:

- насыщенный водный раствор гидротартрата калия
 КНС₄Н₄О₆ (рН = 3,57 при 25 °C),
- водный раствор 0,05 моль/л гидрофталата калия
 КНС₈Н₄О₄ (рН = 4,008 при 25 °C),
- водный раствор 0,05 моль/л тетрабората натрия
 (буры) Na₂B₄O₇ ·10H₂O (рH = 9,18 при 25 °C, рH = 9,07
 при 38 °C) и др.

Примеры буферных систем

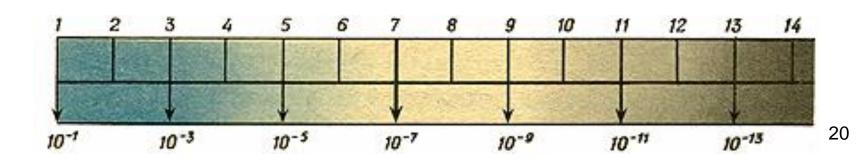
Вид буферной	Буферные растворы	Буферн	ные системы из смесей веществ	
смеси	индивиду- альных веществ	Слабая кислота и ее соль	Слабое основание и его соль	Смесь солей многооснов- ных кислот
Название буферной системы	Гидротар- тратный буфер	Ацетатный буфер	Аммиачный буфер	Фосфатный буфер
Состав буфера	KHC ₄ H ₄ O ₆	CH ₃ COOH CH ₃ COONa	NH ₄ OH NH ₄ Cl	KH ₂ PO ₄ Na ₂ HPO ₄
pH npu 25 °C	pH = 3,57	pH = 4,7	pH = 9,25	$pH = 6,6_{19}$

Классификация:

а) кислотные

1. Ацетатный буфер:

$$\frac{\text{CH}_{3}\text{COOH}}{\text{CH}_{3}\text{COONa}}$$


$$\frac{\text{H}_2\text{CO}_3}{\text{NaHCO}_3}$$

3. Фосфатный буфер:

$$\frac{\text{NaH}_2\text{PO}_4}{\text{Na}_2\text{HPO}_4} \quad \text{pK=7.21}$$

б) основные

Аммиачный буфер:

Вывод формул для расчета рН буферных систем

$$CH_{3}COOH \leftrightarrow CH_{3}COO^{-} + H^{+}$$

$$CH_{3}COOK \rightarrow CH_{3}COO^{-} + K^{+}$$

$$K_{_{\text{Д КИСЛ}}} = \frac{[\text{CH}_{3}\text{COO}^{-}][\text{H}^{+}]}{[\text{CH}_{3}\text{COOH}]}$$

$$[CH_{3}COO^{-}] = C_{c}, \quad [CH_{3}COOH] = C_{\kappa}$$

$$+ 1 = \frac{K_{\text{д кисл}} \cdot C_{\text{кисл}}}{-10 \text{ [H^{+}]}} \quad -10 \text{ K} \quad -10 \frac{C_{\kappa}}{-10}$$

$$[H^{+}] = \frac{K_{\text{д кисл}} \cdot C_{\text{кисл}}}{C_{c}} - \lg [H^{+}] = -\lg K_{\text{д кисл}} - \lg \frac{C_{\kappa}}{C_{c}}$$
$$pH = pK_{\text{д кисл}} + \lg \frac{C_{c}}{C_{c}}$$

$$\begin{aligned} pH &= pK_{_{\text{Д КИСЛ}}} + lg \, \frac{C_{_{c}}}{C_{_{K}}} \\ pH &= pK_{_{\text{Д КИСЛ}}} + lg \, \frac{N_{_{c}} \cdot V_{_{c}}}{N_{_{K}} \cdot V_{_{K}}} \quad pH = pK_{_{\text{КИСЛ}}} + lg \, \frac{n_{_{c}}}{n_{_{K}}} \end{aligned}$$

Уравнение Гендерсона-Гассельбаха

$$pH = pK_{_{\mathcal{I} \text{ кисл}}} + lg \frac{C_c}{C_\kappa}$$

В общем случае:

$$pH = pK_{_{\text{д кисл}}} + lg \frac{C_{\text{сопр.основание}}}{C_{\text{сопр.кислота}}}$$

рН буферного раствора зависит от:

- ✓ Природы компонентов (рК слабой кислоты или основания)
- ✓ Соотношения концентраций компонентов (кислоты и соли)

Механизм действия буферных систем

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$
 $CH_3COONa + HCl \rightarrow CH_3COOH + NaCl$
 CH_3COOP

а)
$$\sim OH^- \rightarrow H_2O$$
 \sim сильное основание NaOH \rightarrow слабое $CH_3COO^ pH$ \uparrow (изменяется, но незначительно!) $\sim H^+ \rightarrow B$ слабую CH_3 $COOH$

рН↓ (незначительно!)

Механизм буферного действия

CH₃COOK

$$CH_3COOK + HCI \rightarrow CH_3COOH + KCI$$

 $CH_3COO^- + H^+ \rightarrow CH_3COOH$

$$CH_3COOH + KOH \rightarrow CH_3COOK + H_2O$$

 $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$

ВАЖНО!!!В основных буферных системах соль (анион-

основание Бренстеда) работает *против кислоты*, *кислота* – против щелочи

Ограничения, накладываемые на буферную систему:

✓ Кислота в ней не должна быть слишком сильной (рК_а< 3), так как в этом случае нельзя пренебречь диссоциацией кислоты;
</p>

✓ Кислота в ней не должна быть и слишком слабой (рК_а > 11), так как в этом случае нельзя пренебречь гидролизом соли (ведь очень слабой кислоте будет соответствовать очень сильное сопряженное основание, по которому идет гидролиз).

Для основного буферного раствора:

$$pH = 14 - pK_{_{\mathcal{I} \text{ OCH}}} + 1g\frac{C_{_{\text{OCH}}}}{C_{_{c}}}$$

ВНИМАНИЕ!!! Уравнение нельзя применять :

✓если концентрации компонентов отличаются более чем в 100 раз; ✓если кислота (основание) слишком сильные - рК_а<3 (нельзя пренебрегать диссоциацией); ✓если кислота (основание) слишком слабые - рК_а>11 (нельзя пренебрегать гидролизом). Понятие «идеального» буферного раствора.

√Соотношение компонентов 1:1

√Одинаково хорошо противостоят как добавлению кислоты, так и добавлению щелочи

Формулы для расчета концентрации [H+], [OH-], рН и рОН буферных систем			
	Буферная система, образованная		
	слабой кислотой и ее солью	слабым основанием и его солью	
[H ⁺]	$[H^+] = K_a \cdot rac{C_{\kappa u c \pi}}{C_{co \pi u}}$	$[H^+] = rac{K_w}{K_b} \cdot rac{C_{conu}}{C_{och}}$	

$$[H^{+}] = K_{a} \cdot \frac{C_{\kappa u c n}}{C_{conu}} \qquad [H^{+}] = \frac{K_{w}}{K_{b}} \cdot \frac{C_{conu}}{C_{och}}$$

$$[OH^{-}] \qquad \qquad C$$

[OH⁻]
$$[OH^{-}] = \frac{K_{w}}{K_{a}} \cdot \frac{C_{conu}}{C_{vucn}}$$

$$[OH^{-}] = K_{b} \cdot \frac{C_{och}}{C_{conu}}$$

$$[OH^{-}] = \frac{K_w}{K_a} \cdot \frac{C_{conu}}{C_{kucn}} \qquad [OH^{-}] = K_b \cdot \frac{C_{och}}{C_{conu}}$$

$$DH \qquad C_{max} \qquad C_{max} \qquad C_{och} \qquad$$

$$pH = pK_a - \lg \frac{C_{\kappa ucn}}{C_{conu}}$$

$$pH = pK_b - \lg \frac{C_{\kappa ucn}}{C_{conu}}$$

$$pH = 14 - pK_b + \lg \frac{C_{och}}{C_{conu}}$$

$$pH = pK_a - \lg \frac{C_{\kappa u c \pi}}{C_{co \pi u}} \qquad pH = 14 - pK_b + \lg \frac{C_{o c H}}{C_{co \pi u}}$$

$$pOH = 14 - pK_a + \lg \frac{C_{\kappa u c \pi}}{C_{co \pi u}} \qquad pOH = pK_{o c H} - \lg \frac{c_{o c H}}{c_{co \pi u}}^{27}$$

Понятие «идеального» буферного раствора.

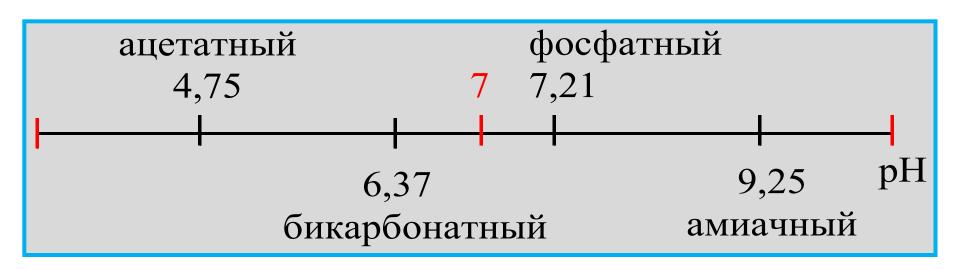
✓ Соотношение компонентов 1:1

√Одинаково хорошо противостоят как добавлению кислоты, так и добавлению щелочи

Влияние разбавления на рН буферного раствора (незначительно

ацетатный буферный раствор

Концентрация (моль/л)	рН
0,1	4,62
0,01	4,67
0,001	4,74


Интервал буферного действия

$$pH = pK_{_{\text{Д КИСЛ}}} + \lg \frac{C_{_{\text{C}}}}{C_{_{\text{K}}}}$$

$$pH = pK_{\text{д кисл}} + \lg \frac{10}{1}$$

$$pH = pK_{_{\text{д кисл}}} + \lg \frac{1}{10}$$

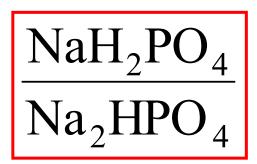
$$pH = pK \pm 1$$

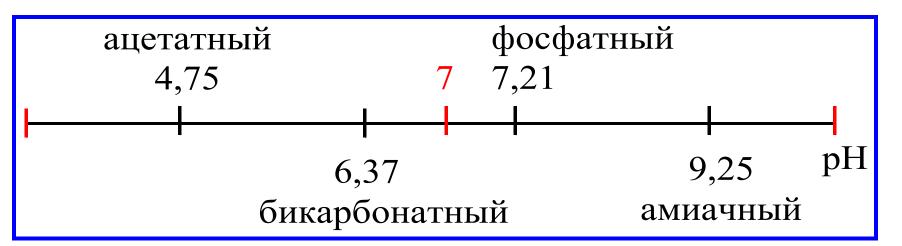
Задача.

Вычислить [H^+] и pH ацетатного буфера с концентрацией эквивалентов 0,01 моль/л CH_3COOH и 0,01 моль/л CH_3COOH и 0,01 моль/л CH_3COONa . $K_{\kappa \mu c n}$ (CH_3COOH) = 1,74 · 10⁻⁵ моль/л.

Решение:

$$[H^+] = K_a \cdot \frac{C_{\kappa u c \pi}}{C_{com}} = 1,74 \cdot 10^{-5} \cdot \frac{0,01}{0,01} = 1,74 \cdot 10^{-5} \text{ моль / л.}$$


$$pH = -\lg[H^+] = -\lg(1,74 \cdot 10^{-5}) = -\lg 1,74 - \lg 10^{-5} = -\lg 1,74 - \lg 10^{-5} = -\lg 1,74 = 4,76.$$


$$[H^+] = 1,74 \cdot 10^{-5} \text{ моль} / \pi; \ pH = 4,76.$$

Приготовление буферных растворов с заданным значением рН

Задача. Приготовить раствор с рН = 7,36.

1.Выбираем фосфатный буфер, поскольку рН приготовленного раствора попадает в зону действия 6.21 – 8.21

Необходимо изменить соотношение компонентов в пользу соли (значение рН находится в более щелочной области, чем рК)

2.Рассчитаем, во сколько раз концентрация соли должна быть больше:

$$7,36 = 7,21 + \lg \frac{[\text{Na}_2\text{HPO}_4]}{[\text{NaH}_2\text{PO}_4]}$$

$$0.15 = lg \frac{[\text{соль}]}{[\text{кислота}]}$$

$$\frac{\text{[соль]}}{\text{[кислота]}} = \frac{\text{[Na}_2\text{HPO}_4]}{\text{[NaH}_2\text{PO}_4]} = 10^{0.15} = \frac{1,41}{1}$$

Вычислить рН ацетатного буфера при концентрациях CH_3COOH и CH_3COON а, *равных 1 моль/л*, и при разбавлении растворов 10 и в 100 раз; по результатам вычислений сделать вывод.

Решение. 1) При концентрациях соли и кислоты *1М*:

$$[H^{+}] = K_{o} \cdot \frac{C_{\kappa - m \omega}}{C_{conu}} = 1.8 \cdot 10^{-5} \times \frac{1}{1} = 1.8 \cdot 10^{-5}$$

$$pH = -\lg[H^{+}] = 1.8 \cdot 10^{-5} = 4.74$$

2) При разбавлении в 10 раз концентрации соли и кислоты 0,1M:

$$[H^{+}] = K_{o} \cdot \frac{C_{\kappa - m \omega}}{C_{conu}} = 1,8 \cdot 10^{-5} \times \frac{0,1}{0,1} = 1,8 \cdot 10^{-5}$$

$$pH = -\lg[H^{+}] = 1,8 \cdot 10^{-5} = 4,74$$

3) При разбавлении в 100 раз концентрации соли и кислоты 0,01M:

$$[H^{+}] = K_{\partial} \cdot \frac{C_{\kappa - m_{bl}}}{C_{conu}} = 1.8 \cdot 10^{-5} \times \frac{0.01}{0.01} = 1.8 \cdot 10^{-5}$$

$$pH = -\lg[H^{+}] = 1.8 \cdot 10^{-5} = 4.74$$

В колбу поместили 2,25 мл 100% уксусной кислоты с плотностью 1,05 г/мл, 4,92 г ацетата натрия и разбавили водой до 200 мл. Рассчитайте рН раствора.

Решение:

$$[H^+] = K_{\partial} \cdot \frac{C_{\kappa-m\omega}}{C_{conu}}$$

$$m(CH_3COOH) = 2,25 \cdot 1,05 = 2,36$$
 г.

$$C(CH_3COOH)=0,04/0,2=0,2$$
 моль/л

$$C(CH_3COONa)=0,06/0,2=0,3$$
 моль/л

$$[H^{+}] = K_{\partial} \cdot \frac{C_{\kappa - mbi}}{C_{conu}} = 1,8 \cdot 10^{-5} \times \frac{0,2}{0,3} = 1,2 \cdot 10^{-5}$$

$$pH = -\lg[H^{+}] = 1,2 \cdot 10^{-5} = 4,92$$

К *100 мл 1 М* ацетатного буферного раствора прибавили **100 мл** *децимолярной* соляной кислоты. Вычислить водородный показатель нового раствора.

Решение: количество вещества уксусной кислоты и ацетата натрия в исходном растворе составит $n=0,1\cdot 1=0,1$ моль, количество вещества добавленной соляной кислоты составит $n=0,1\cdot 0,1=0,01$ моль. Согласно уравнению реакции:

Количество вещества образовавшейся уксусной кислоты равно количеству вещества добавленной соляной кислоты. В конечном растворе n (CH_3COOH)=0,1+0,01=0,11 моль, а количество ацетата натрия 0,1-0,01=0,09 моль

$$C_{\kappa-m_{bl}} = \frac{0,11}{0,2} = 0,55$$
 моль / л
$$C_{conu} = \frac{0,09}{0,2} = 0,45$$
 моль / л
$$[H^{+}] = K_{\partial} \cdot \frac{C_{\kappa-m_{bl}}}{C_{conu}} = 1,8 \cdot 10^{-5} \times \frac{0,55}{0,45} = 2,2 \cdot 10^{-5}$$

$$pH = -\lg[H^{+}] = 2,2 \cdot 10^{-5} = 4,66$$

Предельное количество кислоты или щёлочи (в моль/л), при добавлении которого к буферному раствору его pH изменяется на единицу, называется буферной ёмкостью этого раствора.

Для ацетатного буферного раствора pH должен изменится с 4,74 например до 3,74. Этому значению pH соответствует $[H^+]=1,8\cdot10^{-4}$ то есть в 10 раз больше чем у исходного раствора $(1,8\cdot10^{-5})$. Десятикратное увеличение $[H^+]$ произойдет при условии увеличения в 10 раз отношения уксусной кислоты и ацетата натрия

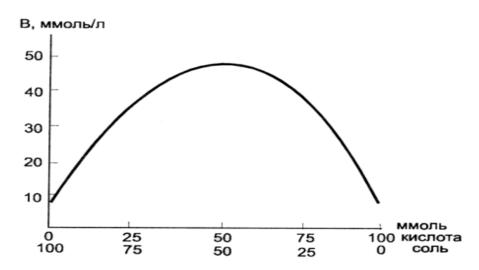
Неизвестное количество соляной кислоты (моль/л), которое можно прибавить к 1 л исходного буферного раствора, обозначим X. Тогда в результате реакции **HCl с CH3COONa** концентрация уксусной кислоты в растворе на эту величину повысится, а концентрация соли понизится:

$$\frac{C_{\kappa-mbl}}{C_{com}} = \frac{1+x}{1-x} = 10$$
 $x = 0.82 \text{ моль / л}$

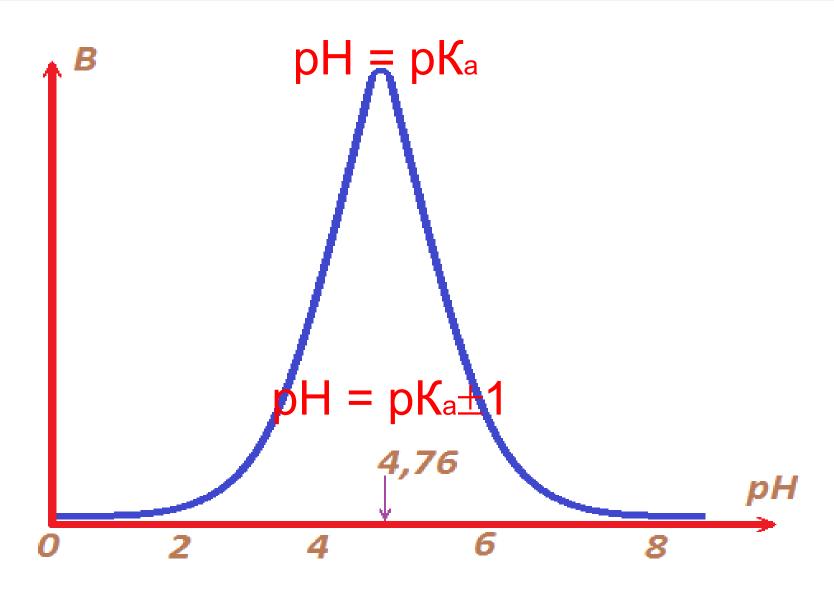
Эффективность буферных систем

	Исходное значение рН	рН при добавлении 0,01 М раствора соляной кислоты	рН при добавлении 0,05 М раствора соляной кислоты
Вода	7,00	2,02	1,30
Буферная система	4,73	4,65	4,24

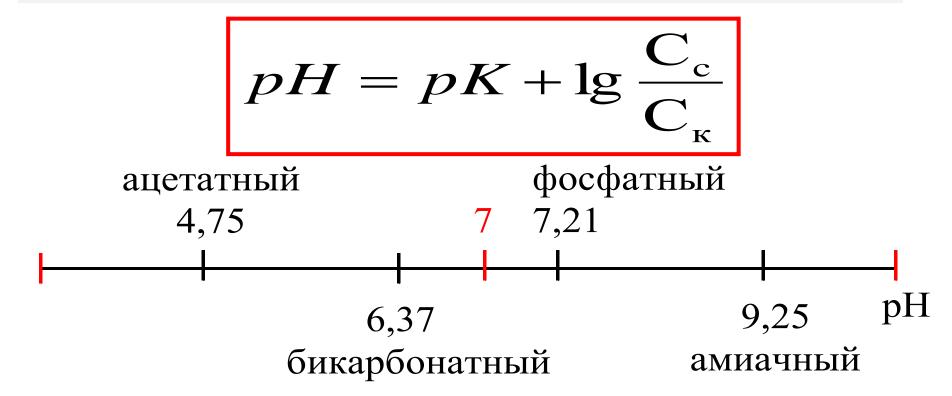
При добавлении больших количеств кислот и щелочей меняется соотношение кислота/соль и меняется рН буферной системы


Буферная ёмкость

В – число моль-экв сильной кислоты или щелочи, которое нужно добавить к 1 л буферной системы, чтобы изменить рН на единицу


$$B = \frac{C_{\text{эл}} \cdot V_{\text{эл}}}{\Delta p H \cdot V_{\text{буф}}}$$

Буферная ёмкость зависит от:


- ✓ Абсолютных концентраций компонентов
- ✓ От соотношения компонентов и максимальна при соотношении 1 /1

Зависимость буферной емкости от рН для ацетатного буфера

Буферная ёмкость по кислоте и по щёлочи

Буферные растворы, у которых **рН < рК** (более кислое по отношению к *рК*)

лучше противостоят добавлению щелочи.

Буферные растворы, у которых рН > рК, (более щелочное по отношению к рК)

имеют большую буферную емкость по *кислот*е.

- Задача на определения буферной силы Имеется два буферных раствора следующего состава:
- 1) Ацетатный буфер: 1M CH₃COOH + 1M CH₃COONa, $pK_{a}(CH_{3}COOH) = 4,76.$
- 2) **Формиатный буфер**: 0,1М HCOOH + 0,02М HCOONa, $pK_a(HCOOH) = 3,75.$

К буферным растворам был добавлен одинаковый объем 0,01 M HCI. Определить какой из растворов обладает большей буферной силой.

Решение:

1) Определим pH буферных растворов до прибавления HCI:
$$pH(Au.E.) = pK_a - \lg \frac{C_{\kappa ucn}}{C_{conv}} = 4,76 - \lg \frac{1}{1} = 4,76 - \lg 1 = 4,76.$$

$$pH(\Phi opm.E.) = pK_a - \lg \frac{C_{\kappa ucn}}{C_{com}} = 3,75 - \lg \frac{0,1}{0,02} = 3,75 - \lg 5 = 3,05.$$

2) При добавлении 0,01 М НСІ протекают реакции:

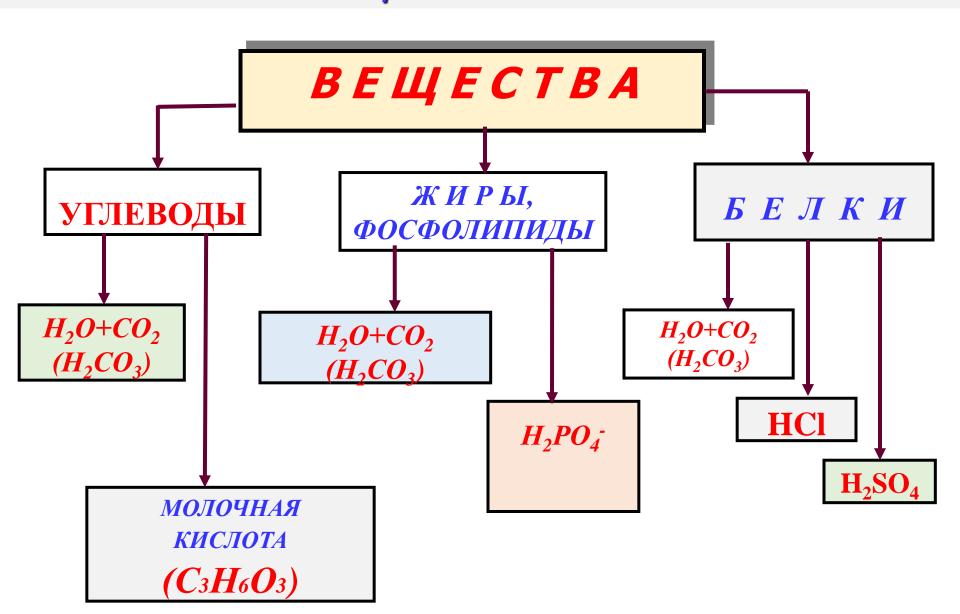
В результате реакций концентрации слабых кислот увеличились на 0,01 моль, а концентрации сопряженных солей уменьшились на 0,01 моль.

3) Рассчитаем pH буферных растворов после добавления 0,01 M соляной кислоты HCI:

$$pH(Ay.B.) = pK_a - \lg \frac{C_{\kappa ucn}}{C_{conu}} = 4,76 - \lg \frac{1+0,01}{1-0,01} = 4,7514.$$

$$pH(\Phi opm.E.) = pK_a - \lg \frac{C_{\kappa ucn}}{C_{conu}} = 3,75 - \lg \frac{0,1+0,01}{0,02-0,01} = 2,71.$$

4) Сравним изменение рН до и после прибавления 0,01 М соляной кислоты НСІ в обоих случаях:


Для ацетатного буфера $\Delta pH = 4,76 - 4,7514 = 0,0086$. Для формиатного буфера $\Delta pH = 3,05 - 2,71 = 0,34$.

Ответ:

Ацетатный буфер обладает **большей** буферной силой, чем **формиатный** буфер, *так как при добавлении одинакового количества сильной кислоты HCI значение pH ацетатного буфера изменилось существенно меньше, чем в случае формиатного буфера.*

CH₃COOH CH₃COONa HCOOH HCOONa

ВИДЫ ОБМЕНА ВЕЩЕСТВ И КИСЛОТЫ, ОБРАЗУЮЩИЕСЯ В ОРГАНИЗМЕ

Буферные системы крови

Из кишечника и тканей в кровь при обмене веществ постоянно поступают различные кислоты: угольная, молочная, масляная...

и, в меньшей степени, основания: аммиак, креатин.

Благодаря наличию буферных систем, рН крови остается постоянным

 7.4 ± 0.04


В организме человека в спокойном состоянии ежесуточно образуется количество кислоты, эквивалентное ≈ 30 л 1 н HCI !!!!

ОСНОВНЫЕ ХИМИЧЕСКИЕ БУФЕРНЫЕ СИСТЕМЫ УСТРАНЕНИЯ / УМЕНЬШЕНИЯ СДВИГОВ КЩР

ТРАНСФОРМАЦИЯ СИЛЬНЫХ КИСЛОТ И ОСНОВАНИЙ В СЛАБЫЕ

УСТРАНЕНИЕ / УМЕНЬШЕНИЕ СДВИГОВ КЩР

Защитные функции по поддержанию постоянства рН выполняют 4 буферные системы:

✓ Бикарбонатная $✓ H_2CO_3 / HCO_3^-$

√Фосфатная

K₂HPO₄ и KH₂PO₄ Na₂HPO₄ и NaH₂PO₄-

√Белковая

NH₂-Pt-COOH NH₂ -Pt-COONa

√Гемоглобиновая

H-Hb K-Hb

Буферные растворы организма

Постоянство рН крови (7,36 0,04)
 обеспечивается буферными системами
 крови сопряженно с работой легких и
 почек.

• Буферные системы крови неравномерно распределены между плазмой и эритроцитами.

В плазме

• Гидрокарбонатный буфер

$$H_2CO_3/HCO_3^ pK_a 6,25$$

• Фосфатный буфер

$$H_2PO_4^-/HPO_4^{2-}$$
 pK_a 7,2

• Белковый буфер

HPt / Pt – работает сопряженно с бикарбонатной системой.

Вэритроцитах

• Гемоглобиновый буфер в двух вариантах:

```
-HHb/Hb- pK_a 8,2
```

– HHb·O₂ / Hb·O₂ - pK_a 6,95
 (оксигемоглобиновый)

Гемоглобиновый-оксигемоглобиновый буфер составляет 75 % всей буферной емкости эритроцитов 51

В эритроцитах

- Гидрокарбонатный буфер
 - функционирует сопряженно с гемоглобиновым
- **Фосфатный буфер** (незначительная буферная емкость)
 - здесь могут быть:
 - а) *неорганические* фосфатные буферные пары
 - б) *органические* фосфатные буферные пары

В других тканях организма

- **В моче,** межклеточной жидкости фосфатная буферная система будет играть более важную роль, чем в крови.
- Предполагают, что в тканях может существовать также аминокислотная и пептидная буферная система (дипептиды карнозин, ансерин)
- В почках может работать аммиачная буферная система, но в сопряжении с фосфатной и гидрокарбонатной.

І. Бикарбонатная буферная система:

$$\frac{HCO_3^-}{H_2CO_3}$$

$$K = 4.37 \cdot 10^{-7}$$
 $pK = 6.37$

С учётом растворенного CO₂ (37°C)

$$\frac{HCO_3^-}{CO_2 + H_2CO_3}$$

$$K = 7.76 \cdot 10^{-7}$$
 pK = 6,11

Уравнение Гендерсона-Гассельбаха (для расчета рН крови)

$$pH = 6.11 + 1g \frac{[HCO_3]}{pCO_2}$$

рСО₂ – альвеолярное давление (парциальное давление СО₂ воздуха, находящегося в равновесии с кровью)

Расчёт рН крови

$$[HCO_3^-] = 23,9$$
 ммоль/л $\alpha \cdot pCO_2 = 0,03\cdot 40$ мм рт.столба $= 1,2$

$$pH_{\text{крови}} = 6,11 + lg \frac{23,9}{1,2} = 7,4$$

$$pH_{\text{крови}} = 6,11 + lg \frac{20}{1} = 7,4$$

Поскольку [HCO₃⁻]:[CO₂]=20:1, а HCO₃⁻ работает против кислоты, бикарбонатная система имеет буферную емкость по кислоте значительно больше буферной емкости по основанию. Это отвечает особенностям метаболизма организма.

Механизм действия бикарбонатной буферной системы

При увеличении в крови концентрации ионов Н⁺ происходит выделение СО₂, который выводится из организма в процессе дыхания через легкие:

$$H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2^{\uparrow} + H_2O$$

При поступлении в кровь оснований, они связываются угольной кислотой, и равновесие смещается в сторону образования HCO₃⁻:

$$OH^- + H_2CO_3 \leftrightarrow HCO_3^- + H_2O$$

Нарушение кислотно-основного равновесия в организме компенсируется бикарбонатной буферной системы (за 10-15 мин).

Соотношение $[HCO_3^-]/[H_2CO_3]$ изменяется и приходит в норму за счет легочной вентиляции в течение 10-18 часов.

Бикарбонатный буфер - основной буферной системой плазмы крови и содержится также в эритроцитах, межклеточной жидкости и в почечной ткани.

II. Фосфатная буферная система:

Фосфатная буферная система содержится как в крови, так и в клеточной жидкости других тканей, особенно почек и пищеварительных желез

 K_2HPO_4 и KH_2PO_4 - в клетках Na_2HPO_4 и NaH_2PO_4 - в плазме крови и межклеточной жидкости

Фосфатная буферная система также имеет буферную емкость по кислоте больше, чем по основанию.

Уравнение буферного действия:

pH = 6,8 + lg
$$\frac{[\text{HPO}_4^{2-}]}{[\text{H}_2\text{PO}_4^{-}]}$$

В норме отношение форм $[HPO_4^{2-}]/[H_2PO_4^{-}]=4:1.$

58

Механизм действия

При увеличении ионов H⁺ во внутриклеточной жидкости, в результате переработки мясной пищи образующийся избыточный дигидрофосфат выводится почками. pH мочи уменьшается.

$$H^+ + HPO_4^{2-} \leftrightarrow H_2PO_4^{-1}$$

При употреблении растительной пищи в организме накапливаются основания. Они нейтрализуются ионами $H_2PO_4^-$, и образующийся дигидрофосфат выводится почками. pH мочи повышается:

$$OH^- + H_2PO_4^- \leftrightarrow HPO_4^{2-} + H_2O$$

В отличие от гидрокарбонатной, фосфатная система более «консервативна». Избыточные продукты нейтрализации выводятся через почки и полное восстановление отношения [HPO_4^{2-}]/[$H_2PO_4^{-}$] происходит только через 2-3 суток.

Выведение тех или иных компонентов фосфатной буферной системы с мочой, в зависимости от перерабатываемой пищи, объясняет широкий интервал значений рН

(4,8 ∂o 7,5.)

59

III. Белковая буферная система:

NH₂-Pt-COOH NH₂ -Pt-COONa

Белки составляют 20% массы клеток и тканей, поэтому белковая буферная система является одной из мощных буферных систем организма.

В результате ионизации аминогрупп и карбоксильных групп белки существуют в водных растворах в виде биполярного иона R[±]:

$$NH_2$$
-Pt-COOH (R) $\leftrightarrow NH_3$ +-Pt-COO- (R±)

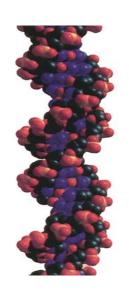
pl (U9T)

 изоэлектрическая точка белка – значение рН, при котором молекула белка, в целом, электронейтральна

Механизм действия

При добавлении сильной кислоты протон присоединяется к -СОО⁻- группе с образованием катиона R+:

$$NH_{3}^{+} - Pt - COO^{-} + H^{+} \rightarrow NH_{3}^{+} - Pt - COOH$$


При добавлении *щелочи* группа NH₃+ отдает протон, и образует анион R⁻:

$$NH_3^+ - Pt - COO^- + OH^- \leftrightarrow NH_2 - Pt - COO^- + H_2O$$

Поскольку молекулы белков состоят из большого количества аминокислот, каждая из которых имеет собственные значения рК по карбоксильной и амино-группам, условие максимальной буферной емкости рН=рК выполняется практически по всей шкале

рН.
Кислотно-основные свойства важнейших α-аминокислот

	pKa			
Кислоты	-соон	-NH ₃ +	ионогенных групп в радикале	pl
Алании	2,3	9,7		6,0
Аргинин	2,2	9,0	12,5	10,8
Аспарагин	2,0	8,8		5,4
Аспарагиновая	2,1	9,8	3,9	3,0
Валин	2,3	9,6		6,0
Глицин	2,3	9,6		6,0
Глутамин	2,2	9,1		5,7
Глутаминовая	2,2	9,7	4,3	3,2
Гистидин	1,8	9,2	6,0	7,6
Изолейцин	2,4	9,7		6,1
Лейцин	2,4	9,6		6,0
Лизин	2,2	9,0	10,45	9,8
Метионин	2,3	9,2		5,8
Пролин	2,0	10,6		6,3
Серии	2,2	9,2		5,7
Тирозин	2,2	9,1	10,1	5,7
Треонин	2,6	10,4		6,5
Триптофан	2,4	9,4		5,9
Фенилаланин	1,8	9,1		5,5
Цистеин	1,7	10,8	8,3	5,0

Белковая буферная система поддерживает постоянство рН в клетках и тканях, причем:

R⁺ в средах *с pH*<6, **R**⁺ в средах *с pH*>6.

В крови работает анионный белковый буфер.

Попадающие на кожу человека небольшие количества кислоты или щелочи довольно быстро нейтрализуются белковой буферной системой

IV. Гемоглобиновая буферная система:

```
Гемоглобиновая

H-Hb

K-Hb

венозная кровь

pH = 7.32 – 7.36
```

```
Оксигемоглобиновая HHbO_2 K-HbO_2 артериальная кровь pH = 7.42 - 7.46
```

~ 35 % общего буферного действия крови

~ 63-75 % общего буферного действия в эритроцитах

Оксигемоглобин более сильная кислота, чем гемоглобин!

$$HHb \leftrightarrow H^+ + Hb^ pK = 8,2$$

 $HHbO_2 \leftrightarrow H^+ + HbO_2^ pK = 6,95$

В легких идет процесс оксигенации:

$$H-Hb+O_2 \rightarrow H-HbO_2$$

pK=8.2
pK=6.95

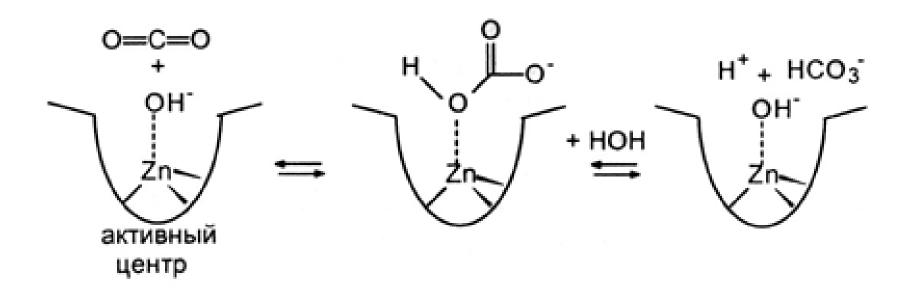
среда должна стать более кислой, но бикарбонат-ион взаимодействует с оксигемоглобином и кислотность среды восстанавливается:

$$HCO_3^- + H-HbO_2 \rightarrow HbO_2^- + H_2O + CO_2^{\uparrow}$$

В тканях отдаётся кислород и поглощается СО2

$$HbO_2^- \leftrightarrow Hb^- + O_2$$

 $CO_2 + H_2O \rightarrow H_2CO_3$


$$H-Hb O_2 \rightarrow H-Hb + O_2$$

$$pK=6.95 \qquad pK=8.2$$

Среда должна стать более щелочной, но в реакцию вступает более сильная угольная кислота, образуя *бикарбонат-ион,* который является основным компонентом щелочного резерва крови.

$$Hb^{-} + H_{2}CO_{3} \rightarrow H - Hb + HCO_{3}^{-}$$

pK=8,2

Заметим, что образование свободного СО₂ при поступлении крови в легкие происходит за счет карбоангидразы эритроцитов, под действием которой расщепляются бикарбонаты.

Иными словами, карбоангидраза способствует выделению CO₂ через легкие!!!

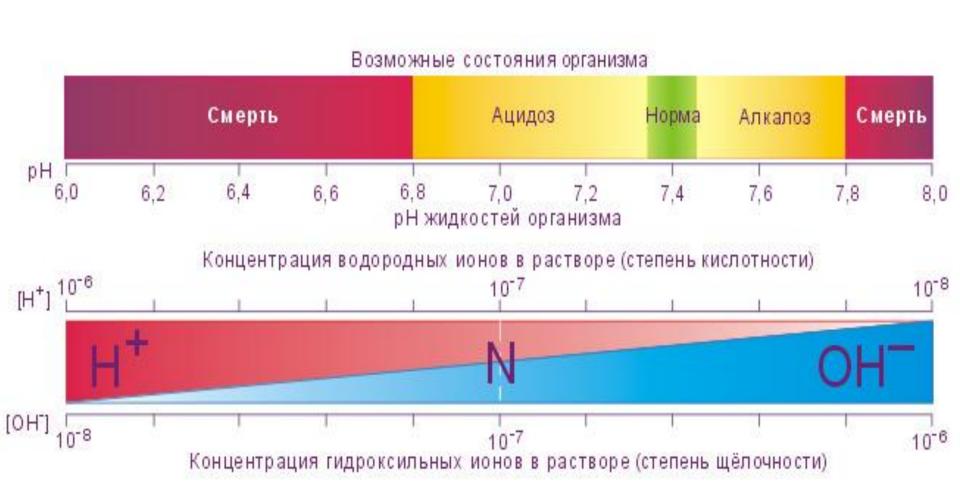
Относительный вклад буферных систем крови в поддержание в ней протолитического гомеостаза

Буферные системы плазмы крови	Относительный вклад, %	Буферные системы эритроцитов	Относительный вклад, %
Гидрокарбонатная НСО ₃ -, Н ₂ СО ₃	35	Гемоглобиновая Hb ⁻ , HHb, HbO ₂ ⁻ , HHbO ₂	35
Белковая (Prot) ⁻ , HProt	7	Гидрокарбонатная НСО ₃ ⁻ , Н ₂ СО ₃	18
Гидрофосфатная HPO ₄ ²⁻ , H ₂ PO ₄ ⁻	1	Гидрофосфатная HPO ₄ ²⁻ , H ₂ PO ₄ ⁻	4
Общий	43	Общий	57

Все буферные системы организма обладают большей буферной емкостью по кислоте, чем по основанию,

(поскольку характеризуются соотношением):

1: 4 < [акцептор протона]/[донор протона] < 1: 20

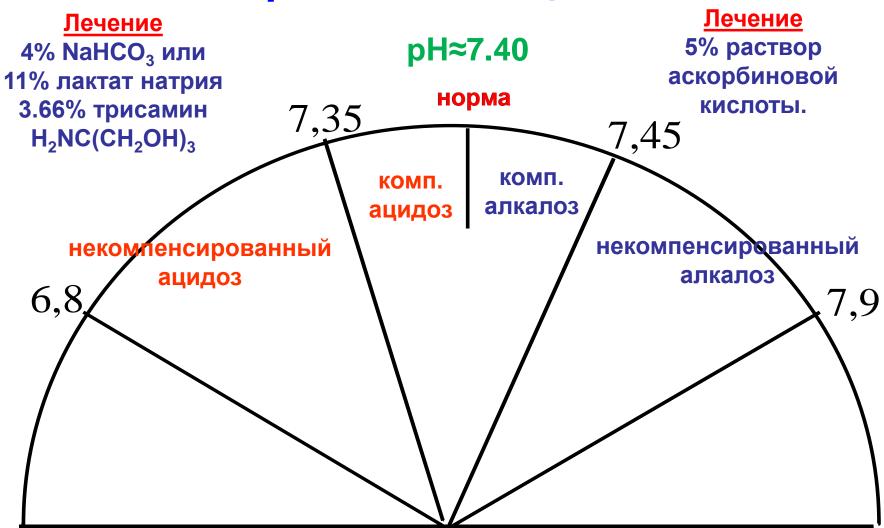

Это соотношение находится в соответствии с особенностями метаболизма человеческого организма, образующего больше кислотных продуктов, чем основных.

Именно поэтому очень важным показателем для физиологических сред является буферная емкость В_к по кислоте.

При заболеваниях органов дыхания, кровообращения, печени, желудка, почек, при отравлениях, голодании, диабете, ожоговой болезни может наблюдаться уменьшение или увеличение В_к по сравнению с нормой.

Возникают патологические явления: ацидоз и алкалоз.

рН крови в норме и при патологии


Ацидоз

 накопление в организме кислых продуктов уменьшение рН крови в сравнении с нормой (уменьшение кислотной буферной емкости в сравнении с нормой)

Алкалоз

 накопление в организме щелочных продуктов увеличение рН крови в сравнении с нормой (увеличение кислотной буферной емкости в сравнении с нормой)

Компенсированный и некомпенсированный ацидоз и алкалоз

ВИДЫ ВЫДЕЛИТЕЛЬНОГО АЦИДОЗА

ВЫДЕЛИТЕЛЬНЫЙ АЦИДОЗ

ПОЧЕЧНЫЙ

- * накопление в организме кислот
- * потеря им оснований

КИШЕЧНЫЙ

* потеря организмом оснований

ГИПЕРСАЛИВАЦИОНН

* потеря организмом оснований

ПРИМЕРЫ ПАТОЛОГИЧЕСКИХ СОСТОЯНИЙ И ВОЗДЕЙСТВИЙ, ВЫЗЫВАЮЩИХ ВЫДЕЛИТЕЛЬНЫЙ АЦИДОЗ:

- •почечная недостаточность
- •интоксикация сульфаниламидами
- "обессоливающий" нефрит
- •гипоксия ткани почек

- •диарея
- •фистула тонкого кишечника
- •открытая рана тонкого кишечника
- рвота кишечным содержимым

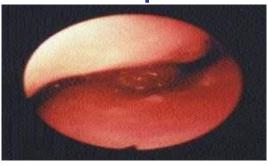
- •стоматиты
- •отравление никотином, препаратами ртути
- •токсикоз беременных
- гельминтоз

МЕТАБОЛИЧЕСКИЙ АЦИДОЗ

Недостаток *HCO*₃⁻ или избыток нелетучих кислот в межклеточной жидкости

Причины:

- ✓ введение или образование стойких кислот (молочная кислота при шоке, кетокислоты при голодании и диабете);
- ✓ неполное удаление кислот при почечной недостаточности;
- √ потеря НСО₃- при заболеваниях ЖКТ;
- ✓ кислородное голодание тканей.


ДЫХАТЕЛЬНЫЙ АЦИДОЗ

Избыток CO₂ (вследствие понижения легочной вентиляции по сравнению с нормой)

Причины:

- ✓ нарушение регуляции дыхания при травмах и опухолях мозга, кровоизлияниях в мозг
- ✓ введение транквилизаторов (барбитуратов)
- ✓ отравление морфином, алкоголем

✓ пневмония, отек легких, попадание инородных предметов в дыхательный тракт

Здоровые легкие ребенка

Легкие при пневмонии

ВИДЫ ВЫДЕЛИТЕЛЬНОГО АЛКАЛОЗА

ЖЕЛУДОЧНЫЙ

ПОЧЕЧНЫЙ

КИШЕЧНЫЙ

ДЕГИДРАТАЦИОННЫІ (потеря Ct)

*потеря HCl желудочного сока

- *увеличение реабсорбции оснований
- *повышение выведения хлоридов, K^+
- *усиление экскреции Н+ в почках

*увеличение выведения *К*+ через кишечник

ПРИМЕРЫ ПАТОЛОГИЧЕСКИХ СОСТОЯНИЙ И ВОЗДЕЙСТВИЙ, ВЫЗЫВАЮЩИХ ВЫДЕЛИТЕЛЬНЫЙ АЛКАЛОЗ

- токсикоз беременных
- пилороспазм
- пилоростеноз
- кишечная непроходимость. Сопровождается повторной рвотой желуд. содержимым
- длительное применение диуретиков, антибиотиков, нитратов

- злоупотребление слабительными
- •повторное применение клизм

• длительное интенсивное потовыделение

ДЫХАТЕЛЬНЫЙ АЛКАЛОЗ

Недостаток CO₂ в связи с повышением легочной вентиляции, в сравнении с нормой.

Причины:

✓ вдыхание разреженного воздуха;

✓ тепловая отдышка;

✓ лихорадочное состояние, истерия.

МЕТАБОЛИЧЕСКИЙ АЛКАЛОЗ

Удаление кислот из организма или накопление HCO₃Причины:

- ✓ потеря Н+ при рвоте и кишечной непроходимости;
- ✓ увеличение НСО₃⁻ при введении солей органических кислот (лимонной, молочной, уксусной, яблочной);
- ✓ длительный приём щелочной пищи или минеральной воды.

Щелочной резерв крови

Число мл CO₂, содержащееся в 100 мл крови (главным образом в виде гидрокарбонатов HCO₃⁻)

компоненты крови

Норма:

50-70 % (по объему)

или 25-30 ммоль/л

Клинический анализ желудочного содержимого.

Кислотность желудочного сока -

количество мл 0,1 н раствора щелочи, необходимого для нейтрализации 100 мл профильтрованного желудочного содержимого.

Норма – 40-60 мл 0,1 н NaOH;

Пониженная кислотность — 30 мл 0,1 н NaOH;

Повышенная кислотность — 60 мл н NaOH.

Требования к буферным растворам

- 1. Обладать достаточной буферной емкостью в требуемом диапазоне значений рН.
- 2. Обладать высокой степенью чистоты.
- 3. Хорошо растворяться в воде и не проникать через биологические мембраны.
- 4. Обладать устойчивостью к действию ферментов и гидролизу.
- 5. pH буферных растворов должен как можно меньше зависеть от их концентрации, температуры и ионного или солевого состава среды.
- 6. Не оказывать токсического или ингибирующего действия.
- 7. Не поглощать свет в видимой или ультрафиолетовой областях спектра.

Применение буферных растворов

- Буферные системы играют значительную роль в регуляции жизнедеятельности живых организмов, в которых должно сохраняться постоянство *pH* крови, лимфы и других жидкостей.
- Например,
- ∆рН крови в организме человека = 7,35 7,45.
- Действующими **буферами крови** являются: фосфатный буфер, гидрокарбонатный буфер и белковый буфер.
- Буферы, состоящие из белков, поддерживают **рН слез** равным 7,4.
- Буферные растворы используют в **бактериологических** исследованиях для поддержания постоянства рН культурных сред для выращивания бактерий. 82

- Буферные растворы играют важную роль во многих технологических процессах.
- Буферные растворы **используются**:
 - при электрохимическом нанесении защитных покрытий,
 - в производстве красителей, фотоматериалов и кожи.
 - в химическом анализе и для калибровки рН-метров.
- В качественном анализе буферные растворы используют, когда необходимо соблюдать постоянство рН растворов при разбавлении или добавлении в реакционную смесь других реагентов.
- 1. При проведении ОВР, реакций осаждении сульфидов, гидроксидов, карбонатов, фосфатов и др.
- 2. При действии групповых реагентов для осаждения катионов III и IV аналитических групп.

Например, для осаждения катионов с помощью $(NH_4)_2CO_3$ и $(NH_4)_2S$ используют основный буферный раствор $(NH_4OH + NH_4CI)$ рН ≈ 9.

- При определении ионов Zn²+ в виде ZnS в присутствии других катионов берут формиатный буфер, pH ≈ 3.
- 4. Характерной реакцией ионов Ва²⁺ является реакция образования хромата бария:

$K_2Cr_2O_7 + 2BaCl_2 + H_2O \leftrightarrow BaCrO_4 \downarrow + 2KCl + 2HCl$

К раствору добавляют ацетат натрия CH₃COONa, который связывает ионы H⁺ в молекулы CH₃COOH:

HCI + CH₃COONa = CH₃COOH + NaCl

Образуется ацетатная буферная смесь (рН 4,74), и осадок BaCrO₄↓ не растворяется.

5. При использовании буферных растворов в сильнокислых (сильнощелочных) растворах предварительно нейтрализуют большую часть кислоты или щелочи.

Для этого к сильнокислым растворам добавляют сухую соль слабой кислоты $\mathbf{CH_3COONa}$; к сильнощелочным растворам – сухую соль $\mathbf{NH_4CI}$.

Наиболее распространенные в химическом анализе буферные растворы

№	Состав	Название	pН
1	1M CH ₃ COOH + 1M CH ₃ COONa	ацетатный	4,74
2	1M NH ₄ OH + 1M NH ₄ Cl	аммонийный	9,20
3	1M NaH ₂ PO ₄ + 1M Na ₂ HPO ₄	фосфатный	6,60
4	1M HCOOH + 1M HCOONH ₄	формиатный	3,80
5	0,05 M NaHCO ₃ + 0,05 M Na ₂ CO ₃	карбонатный	9,93
			85