Тема: Химия биогенных элементов. d-элементы и их соединения.

Учебно-исследовательская работа студента (УИРС): «Химико-аналитические свойства ионов д-элементов».

Опыт 1. Гидролиз катионов d-элементов. Приготовьте для выполнения опытов 10 чистых микропробирок в штативе. Запишите в лабораторном журнале таблицу по следующей форме:

Пробирка	Исследуемый	Окраска	Окраска	рН раствора
	катион	растворов	индикаторной	
			бумаги	
1.	Cr ³⁺			
2.	Mn ²⁺			
3.	Fe ²⁺			
4.	Fe ³⁺			
5.	Co ²⁺			
6.	Ni ²⁺			

Отберите в пробирки 1, 2, 4-6 по 3-4 капли растворов солей указанных катионов. В пробирке 3 приготовьте раствор соли Мора. Запишите в таблицу окраску растворов. Обмакните стеклянную палочку в раствор в пробирке 1 и смочите мокрой палочкой универсальную индикаторную бумагу. Сравните окраску бумаги с цветной шкалой, связывающей окраску с рН раствора. Запишите цвет бумаги и значение рН в таблицу. Ополосните стеклянную палочку водой и повторите опыт с раствором соли в пробирке 2 и т.д.

При анализе наблюдений опыта 1 отметьте, у каких катионов степень гидролиза больше, у каких — меньше. Какой катион — Fe^{2+} или Fe^{3+} - гидролизуется в большей степени? Почему? Постарайтесь сформулировать выводы о зависимости степени гидролиза катионов d-элементов от природы катиона и заряда. Напишите в общем виде ионное уравнение реакции гидролиза катионов (лучше с точки зрения протолитической теории кислот и оснований).

Опыт 2. *Образование гидроксидов катионов d-элементов и изучение их свойств*. Приготовьте таблицу для записи наблюдений по форме:

Пробирка	Катион	Реактив		
		КОН,	КОН,	H ₂ SO ₄
		недостаток	избыток	
1.	Cr ³⁺			
2.	Mn ²⁺			
3.	Fe ²⁺			
4.	Fe ³⁺			
5.	Co ²⁺			
6.	Ni ²⁺			
7.	Cu ²⁺			
8.	Zn^{2+}			
9.	Hg ²⁺ Hg ₂ ²⁺		·	
10.	Hg_2^{2+}			

Отберите в пробирки по 3-4 капли растворов солей, указанных в таблице катионов. Расположите пробирки в штативе в соответствии с номерами. Затем прибавьте в каждую пробирку по 1-2 капли раствора КОН (или NaOH) с = 2 моль/л (КОН, недостаток). Отметьте в таблице цвет образовавшихся осадков гидроксидов (в пробирках с катионами ртути (9 и 10) выпадают оксиды HgO и Hg2O соответственно). Обратите внимание, что окраска оксидов Mn (II), Fe (II) изменяется с течением времени.

Затем в те же пробирки прибавьте по 2-3 капли раствора КОН (c = 6 моль/л) (концентрированный раствор щелочи, избыток). Отметьте, какие осадки растворились в избытке щелочи. Затем в те же пробирки прибавьте по 8-10 капель раствора H_2SO_4 (c = 3 моль/л). Запишите наблюдения.

По окончании опыта и заполнении таблицы наблюдений пробирки вымойте и приготовьте их для выполнения опыта 3.

При анализе наблюдений объясните, почему изменялся цвет гидроксидов железа (П) и марганца (П). Какие из гидроксидов обладали заметными кислотными свойствами? Напишите в общем виде реакции образования нерастворимых в воде гидроксидов.

Напишите уравнение реакции растворения гидроксидов цинка и хрома в избытке щелочи.

Опыт 3. Равновесие хромат \leftrightarrow дихромат. Отберите в пробирку 2-3 капли раствора $K_2Cr_2O_7$. Запишите, какой цвет имеет раствор. Прибавьте к нему 1 каплю раствора КОН (с = 2 моль/л). Как изменяется цвет раствора? Затем прибавьте в эту же пробирку 2-3 капли раствора H_2SO_4 . Что наблюдается? Проделайте тот же опыт, взяв первоначально в качестве исходного раствора раствор калия хромата. Запишите наблюдения и уравнения наблюдаемых превращений.

Опыт 4. Получение тиоцианатных комплексов железа (Ш) и кобальта П).

Ионы Fe^{3+} с тиоцианат-ионами образуют железа (Ш) тиоцианат:

$$Fe(H_2O)_6^{3+} + nNCS^- \leftrightarrow [Fe(H_2O)_{6-n} (NCS)_n]^{3-n} + nH_2O$$

Состав образующегося комплекса непостоянен и в зависимости от концентрации Fe^{3+} , NCS-можно колебаться от $[Fe(H_2O)_5(NCS)]^{2+}$ до $[Fe(NCS)_6]^{3-}$. Реакция может быть использована для количественного определения колориметрическим (визуальным) методом.

Кобальт (Π) образует с тиоцианат-ионами комплекс сине-голубого цвета, экстрагирующийся в слой амилового спирта.

К 2-3 каплям раствора соли железа (Ш) прибавьте 2-3 капли раствора калия (или аммония) тиоцианата. Запишите наблюдения.

Опыт 5. Взаимодействие катионов Cu^{2+} , Zn^{2+} , Hg^{2+} , Hg_2^{2+} с иодид-ионами.

Медь (П) легко окисляет иодид-ионы. Образовавшиеся ионы меди (I) с ионами I дают нерастворимый в воде осадок меди (I) иодида:

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI + I_{2}$$

Ионы Zn^{2+} с ионами I^- не реагируют, а ионы Hg^{2+} образуют с избытком иодид-ионов комплексные тетраиодомеркурат (Π)-ион:

$$Hg^{2+} + 2I^{-} \rightarrow HgI_{2} \leftrightarrow [HgI_{4}]^{2-}$$
 оранжевый осадок

При взаимодействии KI с соединениями ртути (I) образуется осадок – ртуть (I) иодида Hg_2I_2 грязно-зеленого цвета. Осадок растворим в избытке реактива с образованием калия тетраиодомеркурата (Π) и черного осадка металлической ртути:

$$Hg_2I_2(T) + 2KI \rightarrow K_2[HgI_4] + Hg(ж)$$

Легкое образование тетраиодомеркурата (Π)-иона доказывает мягкость катиона ртути (Π).

В четыре пробирки отберите по 1-2 капли растворов солей указанных катионов и прилейте к ним по 1-2 капле раствора КІ. Запишите, что наблюдаете в каждой из пробирок.

Затем прибавьте в те же пробирки еще по 3-4 капли раствора KI (избыток). Запишите новые наблюдения. Желтый цвет смеси в пробирке с медью объясняется выделившимся дииодом. Прибавьте в эту пробирку 1 каплю раствора натрия тиосульфата. Что наблюдаете (запишите)? Затем прибавьте еще 3-4 капли раствора $Na_2S_2O_3$. Пронаблюдайте, какие явления при этом происходят. Результаты запишите.

Анализируя данные опытов, сформулируйте вывод о способности катионов dэлементов к комплексообразованию. Отметьте реакции, которые, по вашему мнению, можно рекомендовать как специфические качественные реакции на соответствующие катионы. Напишите уравнения этих реакций, используя формулы образующихся осадков, приведенные в описании опытов.