Итоговое занятие «Биогенные элементы. Физико-химические процессы в полости рта».

Общие рекомендации:

Анализ смеси катионов проводят в основном так называемым дробным методом, т.е. катионы открывают в отдельных пробах раствора. До начала открытия отдельных катионов необходимо провести некоторые предварительные наблюдения и испытания.

• *Отмечают цвет испытуемого раствора*. По окраске раствора делают предварительные заключения о наличии или отсутствии в растворе тех или других катионов (табл. 1.).

Ornacka herotophiy kathonop b pactbone

Окраска некоторых катионов в растворе				
Цвет раствора	Катионы			
Голубой	Cu^{2+}			
Желтый	Fe ³⁺			
Фиолетово-зеленый (темный)	Cr^{3+}			
Розовый	Co^{2+}			
Светло-зеленый	Ni ²⁺			
Желто-зеленый	Cu^{2+} и Fe^{3+} одновременно			

Если раствор не окрашен, в нем отсутствуют отмеченные в табл. 1 катионы, дающие в воде окрашенные аквакомплексы.

• Испытывают анализируемый раствор на окрашивание пламени. В неокрашенное пламя газовой горелки вносят на железной проволоке 1 каплю анализируемого раствора, записывают результат наблюдения и предварительный вывод о наличии (или отсутствии) в растворе того или иного катиона (табл. 2).

Если пламя остается прозрачным (неокрашенным), то в растворе отсутствуют указанные в табл. 2 (и некоторые другие, дающие окрашенное пламя) катионы.

При положительной реакции на пламя предполагаемый катион затем открывается в растворе проведением соответствующих качественных реакций.

Таблица 2

Таблица 1

Окраска пламени некоторыми металлами

Окраска пламени	Катион
Фиолетовая	\mathbf{K}^{+}
Желтая	Na ⁺
Кирпично-красная	Ca^{2+}
Желто-зеленая	Ba ²⁺
Зеленая	Cu ²⁺

• Определяют реакцию раствора. Щелочная реакция раствора свидетельствует о присутствии в анализируемом растворе катионов сильных оснований: K^+ , Na^+ , Ca^{2+} , Ba^{2+} . В щелочной среде отсутствуют катионы Mg^{2+} и большинства dэлементов, так как в этих условиях они образуют нерастворимые в воде гидроксиды. При pH > 7 не может существовать и ион аммония.

Кислая реакция указывает на присутствие в растворе свободных кислот (катион ${\rm H_3O^+}$) или катионов слабых оснований.

• *Испытывают действие едких щелочей*. Если анализируемый раствор имеет кислую или нейтральную реакцию, отбирают 2-3 капли раствора в пробирку и прибавляют 2-3 капли раствора КОН. Записывают результат наблюдения (цвет выпавшего осадка или его отсутствие) и делают вывод о наличии (отсутствии) в растворе тех или иных катионов:

Цвет	белый	белый,	грязно-	светло-	синий	светло-	голубой
выпавшего		быстро	зеленый	бурый		зеленый	
осадка		буреющий					
		на воздухе					
Катион	Mg^{2+}	Mn ²⁺	Fe^{2+}	Fe ³⁺	Co^{2+}	Ni ²⁺	Cu^{2+}

Катионы Hg^{2+} образуют желтый, а катионы ртути (I) и серебра-черный осадок оксидов.

• Испытывают действие калия гексацианоферрата (П) и (Ш). Реакцию обычно проводят капельным методом. На фильтровальную бумагу помещают 1 каплю анализируемого раствора и 1 каплю раствора реактива. Обращают внимание на цвет образовавшихся осадков (если осадки образуются), записывают результат наблюдения и делают выводы, руководствуясь табл. 3.

Если при действии на анализируемый раствор указанных реактивов осадка и бурого окрашивания не образуется, а при взаимодействии с едкими щелочами выпадает белый осадок, то раствор содержит катион магния.

После проведения предварительных испытаний делают вывод о наличии (отсутствии) в растворе тех или других катионов и проводят дополнительные анализы на ещё не открытые катионы.

При проведении анализа в основном используют характерные реакции, изученные в предыдущих работах. Но можно использовать и другие известные реакции. Так, катион Cu^{2+} можно открыть в растворе не только действием избытка водного раствора аммиака (в присутствии Cu^{2+} появляется ярко-синяя окраска), но и реакцией вытеснения меди железом: $Cu^{2+} + Fe^o \rightarrow Fe^{2+} + Cu^o$. На железной проволоке, опущенной в раствор, появляется красный налет меди.

Таблица 3 Состав и цвет некоторых гексацианоферратов

Катион	$K_4[Fe(CN)_6]$	$K_3[Fe(CN)_6]$		
Mn ²⁺	Белый осадок Mn ₂ [Fe(CN) ₆]	Бурый осадок Mn ₃ [Fe(CN) ₆] ₂		
Fe ²⁺	Белый осадок K ₂ Fe[Fe(CN) ₆]	Синий осадок KFe[Fe(CN) ₆]		
Fe ³⁺	Синий осадок KFe[Fe(CN) ₆]	Бурое окрашивание.		
Cr ³⁺	Осадка не дает. Соосажадется с	-		
	другими гексацианоферратми.			
Co ²⁺	Зеленоватый осадок	Буровато-красный осадок		
	Co ₂ [Fe(CN) ₆]	$Co_3[Fe(CN)_6]_2$		
Ni ²⁺	Зеленоватый осадок	Желтовато-бурый осадок		
	Ni ₂ [Fe(CN) ₆]	Ni ₃ [Fe(CN) ₆] ₂		
Cu ²⁺	Темно-красный осадок	Красно-бурый осадок		
	Cu ₂ [Fe(CN) ₆]	Cu ₃ [Fe(CN) ₆] ₂		
	2 \ / 2	2 \ / 2		
Zn^{2+}	Белый осадок	Коричневато-желтый осадок		
	$K_2Zn_3[Fe(CN)_6]_2$	$Zn_3[Fe(CN)_6]_2$		

Пример решения и оформления контрольно-аналитической задачи.

Для анализа получен раствор №1.

Предварительные наблюдения, испытания и выводы.

- 1. Внешний вид и цвет раствора прозрачная бесцветная жидкость.
- Bывод. В анализируемом растворе отсутствуют катионы Cr^{3+} , Fe^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} .
 - 2. Окрашивание пламени. Пламя окрашивается в фиолетовый цвет.
- *Вывод*. В анализируемом растворе, кроме отмеченных выше катионов, отсутствуют катионы Na^+ , Ca^{2+} . Возможно, присутствует катион K^+ .
 - 3. Реакция раствора кислая.
- *Вывод*. В растворе присутствую катионы d-элементов, которые, подвергаясь гидролизу, дают кислую реакцию среды.
 - 4. Действие едких щелочей. Выпадает белый осадок, буреющий на воздухе.
- *Вывод*. Кроме перечисленных выше катионов, в анализируемом растворе отсутствуют Fe^{2+} , Hg^{2+} , Hg_2^{2+} . Возможно, присутствуют Mn^{2+} и Mg^{2+} .
 - 5а. **Действие К**4[**Fe**(**CN**)6]. Выпадает белый осадок.
- *Вывод*. В анализируемом растворе, возможно, присутствуют катионы Mn^{2+} , Zn^{2+} .
 - 5б. Действие $K_3[Fe(CN)_6]$. Выпадает буро-желтый осадок.
- *Вывод*. В растворе могут присутствовать катионы Mn^{2+} и Zn^{2+} .

Общий вывод на основании предварительных испытаний. В анализируемом растворе, возможно, присутствуют катионы K^+ , Mg^{2+} , Mn^{2+} , Zn^{2+} .

Затем открытие катионов проводят с помощью специфических реакций. (См. занятия N_2N_2 , 3)