TEMA 1. Предмет и задачи медицинской химии.

Цель занятия:

Формирование и развитие знаний о механизме и закономерностях процесса растворения, основных положениях теории растворов; приобретение навыков расчета количества компонентов растворов и приготовления раствора заданной концентрации.

Задачи занятия:

- 1) В процессе занятия необходимо усвоить:
- цели и задачи лабораторно-практических занятий по дисциплине «Медицинская химия» и требования кафедры, направленные на их выполнение;
- основные правила работы и поведения в химической лаборатории;
- способы выражения концентрации растворов.
 - 2) Научиться приготавливать растворы заданной концентрации.
- 3) Сформировать у студентов конкретные химические знания и понятия о механизме и закономерностях процесса растворения, основных положениях теории растворов.
- 4) Развить практические *умения* обращаться с лабораторным оборудованием, измерительными приборами, проводить химический опыт, соблюдая правила техники безопасности.
 - 5) Воспитать ценностное отношение к химическим объектам.

Мотивационная характеристика необходимости изучения темы:

Образование растворов связано с растворением различных веществ в соответствующих растворителях. В живых организмах таковым является вода. Вода является основной составной частью всех клеток и тканей организмов. Она обеспечивает процессы всасывания, передвижения питательных веществ и продуктов обмена в организме. Кроме того, образование воды как конечного продукта окисления веществ сопровождается выделением большого количества энергии (29 кДж/моль). Общий объем жидких (водных) сред организма составляет 60% от массы. Из них объем внутрисосудистой жидкости - 5%, внутриклеточной - 40%, а межклеточной - 15%. Исключительная биологическая и биохимическая роль воды связана с особенностями ее структуры и свойств, о чем будет идти речь на данном занятии.

Знания закономерностей растворения газов необходимо для изучения таких жизненно-важных процессов как перенос кровью кислорода и продукта окисления питательных веществ - CO₂. Количественная основа растворимости газов - законы Генри и Дальтона, Сеченова имеют большое значение не только в химии, но и в медицине, поскольку нарушение растворимости газов в крови могут вызвать патологические изменения. Закон Генри, в частности, позволяет вскрыть патологию декомпрессионных заболеваний (кесонная болезнь) у

водолазов, летчиков, работа которых связана с быстрым переходом в среду с резко отличающимся атмосферным давлением. На основе этого же закона проводится лечение в барокамерах (гипербарическая оксигенация) - вдыхание кислорода при повышенном давлении (при лечении газовой гангрены, анемии, при отравлениях и др. заболеваниях). В соответствии с законом Сеченова, не только электролиты, но и белки и липиды, содержание которых в крови может изменяться, оказывают влияние на растворимость в ней О₂ и СО₂.

В физиологических, биохимических, санитарно-гигиенических, фармакологических и других лабораториях применяются растворы точной концентрации (для изучения обмена веществ, метаболизма лекарств, определения химического состава биологических жидкостей, при анализе воды, воздуха и т.д.). Образцы веществ, различные пробы для проведения анализа, в том числе и клинического, обычно переводят в раствор. Поэтому очень важна лабораторная часть занятия, целью которой является научиться готовить растворы заданной концентрации. Умение квалифицированно приготовить раствор необходимо при изучении последующих разделов данного курса, а также биохимии, гигиены и в будущей профессиональной деятельности врачей некоторых специальностей.

Вопросы для самоподготовки:

Решить задачи (Н.Л.Глинка "Задачи и упражнения по общей химии", стр. 108-110, N0401, 405, 429, 434).

Ознакомиться с решением типовых задач (Н.Л.Глинка "Задачи и упражнения по общей химии", гл.VI, стр.104, прим.1 - 8).

Вопросы для аудиторного контроля знаний:

Предмет и задачи медицинской химии. Роль химии в развитии медицинской науки и практического здравоохранения. Значение медицинской химии для стоматологии. Учение В.И. Вернадского о биосфере. Макро- и микроэлементы в окружающей среде и организме человека. Связь эндемических заболеваний с особенностями биогеохимических провинций.

Вода как универсальный растворитель в биосистемах. Физикохимические свойства воды, обусловливающие ее роль в процессах жизнедеятельности. Термодинамика растворения. Энтальпийный и энтропийный факторы и их связь с механизмом растворения. Идеальные растворы.

Способы выражения состава раствора: молярная концентрация, моляльность, массовая доля, мольная доля.

Тесты для проверки уровня знаний:

- 1. Чему равна молярная масса эквивалента NH₃ (через молярную массу вещества):
- a) M/1, 6) M/2, B) M/3, Γ) M/4.
- 2. Для какого раствора молярная концентрация эквивалента и молярная концентрация вещества одинаковы:

- а) p-p Na_2SO_4 , б) p-p H_3PO_4 , в) p-p NaCl, г) p-p $Ca(OH)_2$.
- 3. Рассчитать массовую долю (%) хлорида натрия в 2 н растворе (ρ = 1,08 г/мл):
- а) 9,8; б) 10,8; в) 11,8; г) 12,8.
- 4. В 250 мл раствора содержится 11,4 г сульфата алюминия. Определить молярную концентрацию эквивалента данного раствора.
- а) 0,8 н; б) 0,2 н; в) 0,4 н; г) 0,6
- 5. Рассчитать моляльную концентрацию 20% раствора хлорида натрия:
- a) 4,27; б) 3,42; в) 5,27; г) 0,00427

Учебно-исследовательская работа:

«Приготовление растворов заданной концентрации»

Цель работы: Приобрести навыки взвешивания на весах и приготовления растворов заданной концентрации.

Содержание работы:

Задание 1. Приготовление раствора заданной массовой доли растворенного вещества (w, %) (из твердого вещества и растворителя - воды).

Получив от преподавателя индивидуальное задание.

- 1) Рассчитайте какое количество твердого вещества и воды необходимо взять для его приготовления.
- 2) Отвесьте на весах рассчитанную навеску твердого вещества.
- 3) Перенесите навеску в химический стакан.
- 4) Прилейте необходимое количество воды, отмерив ее цилиндром.
- 5) Перемешайте содержимое до полного растворения круговыми движениями.
- 6) Приготовленный раствор перелейте в мерный цилиндр ёмкостью 50мл и определите плотность раствора (ρ) ареометром (под контролем преподавателя).
- 7) По величине найденной плотности, пользуясь соответствующей таблицей (см. ниже), установите истинную массовую долю растворенного вещества (ω, %) в растворе.

<u>Примечание:</u> Если измеренное значение плотности окажется между двумя значениями в таблице, то массовую долю (ω , %) находят методом интерполяции.

Например, плотность Вашего раствора равна 1247 кг/м³. В таблице же указаны плотности 1241 и 1263 кг/м³, которым соответствуют ω (%) 22% и 24%. Следовательно, изменению ω на 2% соответствует изменение плотности на 1263-1241=22. Ваш раствор отличается по плотности от 1241 на величину 6.

Составим пропорцию:

22 - 2%

$$6 - x \%$$
$$x = \frac{6 \cdot 2}{22} = 0.54\%.$$

Массовая доля (%) Вашего раствора будет равна: 22% + 0.54% = 22.54%.

Таблица Плотности (кг/м³) водных растворов солей (20° C)

Na ₂ CO ₃		NaCl		KC1	
ω, (%)	ρ	ω, (%)	ρ	ω, (%)	ρ
1,62	1015	2,0	1012	2,0	1011
2,10	1020	4,0	1029	4,0	1024
3,05	1030	6,0	1041	6,0	1037
4,03	1040	8,0	1056	8,0	1050
6,0	1060				

$K_2Cr_2O_7$		CuSO ₄		
ω, (%)	ρ	ω, (%)	ρ	
2,0	1012	2,0	1019	
3,0	1019	3,0	1030	
4,0	1026	4,0	1040	
5,0	1033	5,0	1051	
6,0	1040	6,0	1062	
7,0	1048			
8,0	1055			

Отчёт по выполненной лабораторной работе оформите по форме:

•	Задание 1. Приготовитьг растворас массовой долей
	растворенного вещества%.
•	m(р в-ва) =
•	m(вода) =
•	ρ приготовленного раствора =
•	ω (%) растворенного вещества в приготовленном растворе =
•	абсолютная ошибка
•	относительная ошибка

Задание 2. Приготовление раствора заданной массовой доли растворенного вещества путем разбавления исходного раствора.

- 1) Рассчитайте необходимое количество раствора и воды.
- 2) Отмерьте необходимые объемы цилиндром (или пипеткой) в химический стакан.

- 3) Определите плотность раствора ареометром и по таблице установите **истинную** массовую долю растворенного вещества в растворе (см. задание 1, пункт 6 и далее).
- 4) Рассчитайте абсолютную и относительную ошибки.

Абсолютная ошибка - разница в абсолютных цифрах между ожидаемым значением определяемой величины и полученным результатом.

Относительная ошибка - отношение абсолютной ошибки к ожидаемому или среднему значению, выраженное в процентах.

Задания для самостоятельной работы:

- 1. Продемонстрируйте тремя-четырьмя примерами биологическую значимость воды. Какие особенности строения и свойства молекулы воды делают ее универсальным растворителем?
- 2. Определите энтальпию гидратации соды по реакции: $Na_2CO_3 + 10H_2O = Na_2CO_3 \cdot 10H_2O$, если энтальпия растворения безводной соды = -25,1 кДж/моль, кристаллогидрата $Na_2CO_3 \cdot 10H_2O = 67$ кДж/моль.
- 3. Чем объяснить, что эндотермический процесс растворения медного купороса ($\Delta H^{o}_{298} = 11,7$ кДж/моль) является в стандартных условиях самопроизвольным?
- 4. Почему растворимость большинства твердых веществ при повышении температуры увеличивается, а газов, наоборот, понижается?
- 5. Как изменяется энтропия системы при образовании водных растворов:
- а) глюкозы, б) хлорида натрия, в) кислорода, г) азота.
 - 6. Каково изменение изобарно-изотермического потенциала системы при растворении в воде сахара?
 - 7. Что такое растворимость? Как она выражается количественно? Какие факторы определяют величину растворимости твердых, жидких и газообразных веществ?
 - 8. В чем лучше растворим азот и кислород: а) в воде, б) в крови? Почему?
 - 9. Что показывает концентрация раствора? Перечислите способы выражения количественного состава раствора и покажите связи между ними в общей форме.
 - 10. Напишите математическое выражение законов Генри и Сеченова. Проанализируйте их.
 - 11. Для определения мочевины в сыворотке крови используют 5% раствор хлорида железа (III). Считая плотность раствора равной 1 г/мл вычислите молярную, моляльную и молярную концентрацию эквивалента хлорида железа (III) в растворе.
 - 12. Для определения хлоридов в крови (диагностика диабета, почечной недостаточности и т.д.) используют раствор нитрата серебра, который

готовят растворением 2 г соли в мерной колбе на 100 мл. Какова молярная концентрация эквивалента нитрата серебра?

Список литературы:

Основная:

- 1. Общая химия: учебное пособие / С.В.Ткачёв, В.В.Хрусталёв. Минск: Вышэйшая школа, 2020. гл.6 (6.1, 6.2), гл.13 (13.3).
- 2. Ершов, Ю. А. Общая химия. Биофизическая химия. Химия биогенных элементов: учеб. для студентов мед., биол., агрон., ветеринар., экол. вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд; под ред. Ю. А. Ершова. 10-е изд., перераб. и доп. Москва: Юрайт, 2014. гл.2
- 3. Общая и бионеорганическая химия : пособие для студентов учреждений высш. образования, обучающихся по специальностям: 1-79 01 01 «Лечебное дело», 1-79 01 02 «Педиатрия», 1-79 01 07 «Стоматология», 1-79 01 08 «Фармация» / В. П. Хейдоров [и др.] ; М-во здравоохранения Республики Беларусь, УО «Витебский гос. ордена Дружбы народов мед. ун-т» ; под ред. В. П. Хейдорова. Витебск : [ВГМУ], 2023. 524, [1] с. : ил. Библиогр.: С. 522-523.

Дополнительная:

1. Болтромеюк, В.В. Общая химия: пособие для студентов обучающихся по специальностям 1-79 01 01 «Лечебное дело», 1-79 01 02 «Педиатрия», 1-79 01 04 «Медико-диагностическое дело», 1-79 01 05 «Медико-психологическое дело», 1-79 01 06 «Сестринское дело» / В.В. Болтромеюк. — Гродно: ГрГМУ, 2020. — 576 с.