TEMA 8. Учение о растворах (продолжение). Буферные растворы и системы.

Цель занятия:

Развитие, углубление и закрепление знаний о равновесиях в водных растворах электролитов. Формирование теоретических основ буферных систем и химических механизмов поддержания кислотно-основного равновесия в организме. Приобретение практических навыков приготовления буферных растворов с заданным значением рН.

Задачи занятия:

- 1) В процессе занятия необходимо сформировать и развить знания:
- типы буферных систем и принципов их приготовления;
- свойства буферных систем и их роли в поддержании кислотно-щелочного равновесия в организме;
- буферная ёмкость и факторы, определяющие её;
- кислотно-основные равновесия;
 - 2) Сформировать и развить умения:
- записывать состав буферных систем и уравнения реакций, характеризующие механизм их действия;
- готовить буферные растворы с заданным значением рН;
- производить расчеты, с которыми встречаются в практике применения буферных растворов;
- 3) Развить практические умения обращаться с лабораторным оборудованием, проводить химический эксперимент, соблюдая правила техники безопасности.
 - 4) Воспитать ценностное отношение к химическим объектам.

Мотивационная характеристика необходимости изучения темы:

Нормальная жизнедеятельность организма без невозможна постоянных характеристик (температура, поддержания осмотическое давление, концентрация веществ) во внутриклеточных и тканевых жидкостях организма. Одной из постоянных характеристик организма является значение рН всех жидких сред организма (изогидрия). Сохранение постоянства рН жидких сред имеет для организма жизненно важное значение, поскольку все биохимические и физиологические процессы с участием гормонов и ферментов протекают только в строго определенном интервале значений рН. Кроме того, ионы водорода являются катализаторами многих биохимических процессов, а даже небольшие изменения концентрации ионов Н в крови и межтканевых жидкостях сильно влияют на величину осмотического давления в этих биожидкостях. Отклонение рН крови от нормы (7,36) всего лишь на несколько сотых приводит к нарушению процессов жизнедеятельности организма. В настоящее время доказано влияние рН слюны на процессы минерализации и деминерализации эмали зубов.

Ограниченное постоянство pH в различных средах нашего организма поддерживается в первую очередь физико-химическим путем - буферными системами.

В химических, токсикологических, санитарно-гигиенических И клинических лабораториях буферные растворы применяются ДЛЯ поддержания постоянства рН среды, например, при изучении свойств белков, ферментов, гормонов и других биологически активных веществ; при выделении токсинов из биологического материала и их анализе; для приготовления инъекционных растворов, кровезаменителей и стабилизации ряда лекарственных веществ. Определение рН ряда биологических жидкостей (мочи, желудочного сока) является важным диагностическим тестом, поскольку различные заболевания сопровождаются нарушением кислотнощелочного равновесия. Это является предметом изучения клинических дисциплин.

Вопросы для самоподготовки:

1. Ниже приведены средние значения рН некоторых биологических жидкостей: слюна -6.8, желудочный сок -1.5, сок желудочной железы -7.8, моча -6.3, кровь -7.4. Рассчитайте концентрацию ионов водорода в каждой из жидкостей. Результаты оформите в виде таблицы:

Биологическая жидкость	Среднее значение рН	Концентрация ионов H ⁺ , моль/л

2. Из двух растворов: 1) NH_4Cl , c = 1 моль/л; 2) NH_3 , c = 1 моль/л приготовили 3 буферных раствора (а, б, в), смешивая раствор 1 с раствором 2 в следующих соотношениях:

Буферный	Раствор 1,	Раствор 2,	
раствор	$c(NH_4Cl) = 1$ моль/л	$c(NH_3) = 1$ моль/л	
a	6 мл	2 мл	
б	4 мл	4 мл	
В	2 мл	6 мл	

Рассчитайте рН исходных растворов 1 и 2 и рН буферных растворов: а, б, в.

3. Сколько мл 0.05 М раствора HCl надо прибавить к 100 мл крови для изменения рH от 7.36 до 7.0. Буферная емкость крови по кислоте равна 0.05моль/л.

Ознакомиться с решением типовых задач (см. Н.Л.Глинка "Задачи и упражнения по общей химии", гл.VII.3, примеры 1, 2, 4).

Вопросы для аудиторного контроля знаний:

Классификация буферных систем и механизм их действия: равновесие между процессами электролитической диссоциации и гидролиза в паре

сопряжённой кислоты и основания. Расчет рН буферных систем по уравнению Гендерсона-Гассельбаха. Буферная емкость, факторы, влияющие на её величину. Буферные системы крови: гидрокарбонатная, гемоглобиновая, фосфатная и белковая. Понятие о кислотно-щелочном равновесии в биологических жидкостях. Респираторный и метаболический ацидоз и ацидемия, алкалоз и алкалемия.

Тесты для проверки уровня знаний:

- 1. Алкалоз это
- 2. Определите pH буферного раствора, полученного смешиванием 1 мл 1 M раствора CH_3COOH ($K_{\pi} = 1.8 \cdot 10^{-5}$) и 100 мл 0,1 M раствора CH_3COONa .
- 3. При 298 К [H $^+$] в водном растворе HCl равна $10^{\text{-}2}$ моль/л. Рассчитайте pOH этого раствора ...
- 4. Сравните общую кислотность $0,1\,$ M раствора CH_3COOH и $0,1\,$ M раствора $HCl\ldots$
- 5. Кислотные буферные системы эффективно поддерживают pH в диапазоне ...
 - 6. Приведите уравнение для расчета рН ацетатного буфера ...
 - 7. Наибольшая доля в буферной ёмкости в плазме крови у буфера.
- 8. Определите рОН буферного раствора, полученного смешиванием 100 мл 0,1 M раствора NH₄Cl и 1 мл 1 M раствора NH₃·H₂O ($K_{\pi} = 1.8 \cdot 10^{-5}$).
- 9. Для приготовления буферного раствора с заданным значением рН надо знать:
- 10. Можно ли приготовить фосфатный буфер с pH равным 4 (константа диссоциации кислоты равна $6,2\cdot10^{-8}$)?

Учебно-исследовательская работа (УИРС):

«Свойства буферных растворов»

ЦЕЛЬ: изучить зависимость pH буферных растворов от соотношения концентраций компонентов, разведения и добавления небольших количеств сильных кислот и оснований.

3a∂aние №1. Установление зависимости рН буферных растворов от соотношения концентраций составных частей и от разведения

Ход работы:

- 1. Приготовьте 3 буферных раствора со следующими соотношениями концентраций CH₃COOH и CH₃OONa: 9/1; 5/5; 1/9. Каждый приготовленный раствор перемешайте.
- 2. Приготовьте 3 буферных раствора с таким же соотношением концентраций компонентов, но более разбавленные. Для этого возьмите по1мл приготовленных ранее буферных растворов и добавьте к каждому по 8мл воды. Каждый разбавленный раствор перемешайте.

- 3. Во все приготовленные растворы добавьте по 3 капли спиртового раствора лакмоида. Растворы перемешайте.
- 4. Сравните на белом фоне окраску растворов и запишите. Рассчитайте рН приготовленных растворов. Константа ионизации уксусной кислоты (K)=1,85•10⁻⁵.
- 5. Результаты наблюдений и расчетов представьте в таблицу:

№ пробирки		2	3
Соотношение концентрация	я 9/1	5/5	1/9
CH ₃ COOH/CH ₃ COONa			
Цвет раствора после добавления лакмоида			
№ пробирки с разбавленным буферным	л 1"	2"	3"
раствором			
Соотношение концентраций	Ă		
СН ₃ СООН/СН ₃ СООNа в разбавленном растворе			
Цвет раствора после добавления лакмоида			
рН			
Расчеты	$pH_1 =$	$pH_2 =$	$pH_3 =$

6. Сделайте выводы на основании сравнения окраски в 1, 2, 3 пробирках, а также 1 и 1"; 2 и 2"; 3 и 3" и объясните полученные выводы.

Задание №2. Выяснение отношения буферных растворов к добавлению небольших количеств сильных кислот и оснований

- 1. Приготовьте 2 одинаковых буферных раствора, сливая по 4мл 0,1M раствора CH₃COOH и 6мл 0,1 M раствора CH₃COONa.
- 2. В обе пробирки добавьте по 3 капли спиртового раствора лакмоида. Растворы перемешайте.
- 3. В одну пробирку добавьте 5 капель 0,1 М раствора HCI; во вторую 5 капель 0,1 М раствора NaOH. Растворы в обеих пробирках перемешайте и запишите их окраску.
- 4. Результаты представьте в виде таблицы и объясните их.

Буферный раствор	1	2
Окраска после добавления лакмоида		
Окраска после добавления 0,1 M NaOH		
Окраска после добавления 0,1 М НС1		

Задания для самостоятельной работы:

- 1. На основе какой системы из четырех приведенных ниже можно приготовить буферный раствор с рH, 7,4:
 - a) CH₃COOH/CH₃COONa;
 - б) H₃PO₄/KH₂PO₄;
 - в) HCl/KCl;
 - Γ) KH₂PO₄/K₂HPO₄?

- 2. Какие из перечисленных ниже веществ и в каких сочетаниях можно взять для приготовления буферных растворов: NH₄OH, CH₃COOH, HCI, NaOH, Na ₂HPO₄, NaH₂PO₄?
- 3. Как объяснить механизм буферного действия фосфатного буфера при добавлении к нему небольших количеств: a)HCI, б) NaOH?
- 4. Как приготовить буферный раствор с заданным значение рН, что для этого нужно знать?
- 5. Что такое активная, общая и потенциальная кислотность? Одинаковы ли значения этих кислотностей для:
 - a) 0,1 M HCI;
 - б) 0,1 M CH₃COOH?
- 6. Назовите буферные системы крови в порядке возрастания их буферной ёмкости, укажите компоненты, которые их составляют.
- 7. Какие механизмы обеспечивают рН биосред организма постоянным?
- 8. В чем заключается взаимодействие буферных систем организма?
- 9. Покажите на конкретном примере взаимодействие гемоглобиновой и гидрокарбонатной буферной систем в условиях организма?

Список литературы:

Основная:

- 1. Общая химия: учебное пособие / С.В.Ткачёв, В.В.Хрусталёв. Минск: Вышэйшая школа, 2020. гл.7 (7.5), гл.8.
- 2. Ершов, Ю. А. Общая химия. Биофизическая химия. Химия биогенных элементов: учеб. для студентов мед., биол., агрон., ветеринар., экол. вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд; под ред. Ю. А. Ершова. 10-е изд., перераб. и доп. Москва: Юрайт, 2014. гл.3, (3.4, 3.6);
- 3. Общая и бионеорганическая химия: пособие для студентов учреждений высш. образования, обучающихся по специальностям: 1-79 01 01 «Лечебное дело», 1-79 01 02 «Педиатрия», 1-79 01 07 «Стоматология», 1-79 01 08 «Фармация» / В. П. Хейдоров [и др.]; М-во здравоохранения Республики Беларусь, УО «Витебский гос. ордена Дружбы народов мед. ун-т»; под ред. В. П. Хейдорова. Витебск: [ВГМУ], 2023. —глава 5, 5.4. Дополнительная:
- 1. Болтромеюк, В.В. Общая химия: пособие для студентов обучающихся по специальностям 1-79 01 01 «Лечебное дело», 1-79 01 02 «Педиатрия», 1-79 01 04 «Медико-диагностическое дело», 1-79 01 05 «Медико-психологическое дело», 1-79 01 06 «Сестринское дело» / В.В. Болтромеюк. Гродно: ГрГМУ, 2020. 576 с.