3AHSTHE NI5

ТЕМА: ПОЛУЧЕНИЕ, ОЧИСТКА И СВОЙСТВА КОЛЛОИДНЫХ РАСТВОРОВ. КОАГУЛЯЦИЯ И ПЕПТИЗАЦИЯ ЗОЛЕЙ.

Медико-биологическое значение: Коллоидные системы играют огромную роль в человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии, особенности которого изучаются в данной теме. В медицинской практике используется ряд лекарственных веществ в коллоидной степени дисперсности. Такие препараты обладают более длительным (пролонгированным) действием, так как медленнее выводятся из организма. На этом занятии изучаются ряд свойств коллоидов, которые имеют место и в биологических системах: неспособность коллоидных частиц проходить через мембрану (диализ), и методов исследования (ультрацентрифугирование и ультрамикроскопия;

электрофорез и электроосмос). В частности, в основе очистки крови от продуктов обмена "шлаков" лежит принцип диализа, с сущностью которого Вы ознакомитесь в лабораторной части занятия. По принципу диализатора работает не только почка, но и аппарат "искусственная почка", которая может временно замещать функцию больных почек при таких заболевания, как острая почечная недостаточность, в результате отравлений, при тяжелых ожогах и т.п.. Для исследования биологических жидкостей широко используется вивидиализ, с помощью которого в крови можно обнаружить, к примеру, не связанные с белком лекарственные вещества.

Ультрацентрифуги являются незаменимым средством для разделения и выделения фракций белков, нуклеиновых кислот, вирусов. Ультрамикроскопию применяют при исследовании крови, лимфы, вакцин, для контроля чистоты инъекционных растворов, воды и воздушной среды. С помощью ультрамикроскопа можно определить форму и размер коллоидных частиц.

Широко используется в медико - биологических исследованиях электрофоретический анализ белков сыворотки крови с целью диагноза заболеваний. У здоровых людей электрофореграммы имеют примерно одну и ту же картину. При различных заболеваниях электрофореграммы изменяются. Например, при воспалительных процессах резко возрастает фракция γ - глобулинов; при нефритах - увеличиваются зоны α - и β - глобулинов и почти исчезают фракции γ -глобулина и альбумина. С помощью электрофореза в организм вводят различные лекарственные вещества и определяют чистоту лекарственных препаратов. Метод иммуноэлектрофореза используется для обнаружения антигенов, специфических для данных антител. Метод электроосмоса применяется для удаления воды из медицинской ваты и сушки лекарственных препаратов.

Изучение процессов коагуляции и пептизации представляет большой интерес для медиков в связи с тем, что коллоиды клеток и биологических жидкостей организма подвержены коагуляции. Образование тромбов в кровеносных сосудах, слипание эритроцитов представляют собой процессы, аналогичные коагуляции. Одной из причин вышеназванных патологических изменений могут быть электролиты, поскольку коллоиды всех клеток организма находятся в постоянном контакте с электролитами и малейщее изменение постоянства концентрации ионов или качественного состава их может привести к нарушению агрегативной устойчивости коллоидов - коагуляции. В организме имеют место: явление привыкания (к алкоголю, наркотикам и некоторым лекарственным препаратам); действие смеси электролитов или многокомпонентных лекарственных препаратов. В гигиене и санитарии применяют взаимную коагуляцию - для очистки питьевых и сточных вод. С сущностью этих явлений и закономерностями электролитной коагуляции Вы ознакомитесь на данном занятии.

Пептизация играет существенную роль в повышенной растворяющей способности сыворотки крови по отношению к ряду плохораствори-

мых в воде веществ; в растворении свежеобразованных тромбов под действием лекарств - антикоагулянтов.

При изготовлении ряда лекарственных веществ, представляющих собой коллоидные растворы, необходимо защищать их от возможной коагуляции, например, коллоидные препараты серебра-колларгол и протаргол.

<u>Цель занятия:</u> Формирование знаний природы коллоидного состояния, свойств коллоидных систем, методов и условий их получения и очистки; приобретение навыков получения коллоидных растворов и очистки их от низкомолекулярных веществ методом диализа. Приобретение системных знаний по устойчивости коллоидных растворов и факторах, вызывающих ее нарушение; закономерностям электролитной коагуляции и пептизации и их биологического значения.

К занятию необходимо:

1. ИЗУЧИТЬ следующие программные вопросы: Классификация дисперсных систем по степени дисперсности; по агрегатному состоянию фаз; по силе межмолекулярного взаимодействия между дисперсной фазой и дисперсионной средой.

Коллоидные растворы. Природа коллоидного состояния. Методы получения и очистки коллоидных растворов. Фильтрация, диализ, электродиализ, ультрафильтрация. Молекулярно-кинетические свойства коллоидных растворов: броуновское движение, диффузия, осмотическое давление. Ультрацентрифугирование. Оптические свойства дисперсных систем. Эффект Фарадея — Тиндаля. Уравнение Рэлея. Электрические свойства дисперсных систем. Электрофорез и электроосмос. Заряд и строение двойного электрического слоя коллоидной частицы. Строение мицелл.

Кинетическая и агрегативная устойчивость коллоидных растворов. Коагуляция. Порог коагуляции. Правило Шульце — Гарди. Явление привыкания. Взаимная коагуляция. Понятие о теориях коагуляции. Пептизация. Коллоидная защита. Медико-биологическая роль процессов коагуляции, пептизация и коллоидной защиты.

2. РЕППИТЬ задачи:

- Смешано 12 мл 0,02 М раствора сульфата меди (II) и 10 мл 0,05 М раствора гексацианоферрата (II) калия. Написать формулу мицеллы образовавшегося золя и обозначить ее составные части.
- -Какой объем 0,05 М раствора нитрата серебра нужно прибавить к 25 мл 0,01 М раствора КСІ, чтобы получить отрицательный золь хлорида серебра? Написать формулу его мицеллы.
- -К какому электроду при электрофорезе будет продвигаться золь берлинской лазури, полученный при смешивании 12 мл 0,02 М раствора хлорида железа (III) со 100 мл 0,005 М раствора гексацианоферрата (II) калия. Написать формулу мицеллы данного золя.
- -В 2 колбы налито по 100 см³ золя гидроксида железа (III). Чтобы вызвать явную коагуляцию этого золя потребовалось в одну колбу добавить 62,5

см³ 0,01 М раствора сульфата натрия, а во вторую - 67 см³ 0,001 М раствора фосфата натрия. Вычислить пороги коагуляции и определить знак заряда частиц этого золя. Написать формулу мицеллы этого золя в изоэлектрическом состоянии.

3.ПОДГОТОВИТЬСЯ к выполнению учебно-исследовательской работы.

Литература:

/2/ гл. 12 (12.1-12.6); /3/, гл. 9 (9.1-9.4); /4/ гл.22 — 28; /5/, часть 2, гл. I, III (1-2).

Учебно-исследовательская работа:

"Получение, очистка и свойства коллоидных растворов".

Задание 1. Получение золя канифоли.

В пробирку отмерьте 5 мл дистиллированной воды и добавьте 2 капли спиртового раствора канифоли 1%. Смесь перемешайте. Отметьте цвет полученного раствора и укажите метод получения золя.

Задание 2. Получение золя берлинской лазури.

В пробирку отмерьте 3 мл 0.005 М раствора K_4 /Fe(CN)₆/ и прибавьте 1 мл 0.005М раствора FeCl₃. Получают золь, окрашенный в темно-синий цвет. Укажите, каким методом получен золь, какой электролит является стабилизатором, приведите химизм реакции и формулу мицеллы.

Задание 3. Получение золя гидроксида железа (III).

Отмерьте в колбочку цилиндром 25 мл дистиллированной воды и нагрейте на электроплитке до кипения, добавьте быстро 5 мл 2% p-pa FeCl₃. Полученный золь имеет красно-бурый цвет. Укажите метод получения золя и стабилизатор. Приведите химизм реакции и формулу мицеллы. Полученный золь используйте для диализа (задание 4).

Задание 4. Очистка золя диализом.

В пробирку отмерьте ≈ 1 мл золя Fe(OH)₃, полученного в опыте 3. Отверстие пробирки затяните целлофаном, который закрепите резиновым колечком. Пробирку с целлофановым дном вставьте в отверстие картонного кружка и опустите в стакан с дистиллированной водой (≈ 10 мл). Через 15 минут из стакана в пробирку отберите пробу воды (≈ 1 мл), проведите качественную реакцию на ионы хлора (реакция с AgNO₃). Объясните отсутствие в стакане с водой красно-бурого окрашивания и наличие там ионов хлора.

Задание 5. Наблюдение конуса Фарадея - Тиндаля.

В установку для наблюдения конуса Тиндаля (по ходу пучка лучей света) поставьте стакан с коллоидным раствором. Тот же опыт проделайте с дистиллированной водой. Объясните результат. Зарисуйте наблюдаемый конус Тиндаля.

Вопросы для самоконтроля подготовленности к занятию и защиты работы:

- 1. Основной частью аппарата «Искусственная почка» является диализатор. Какой принцип устройства простейшего диализатора? От каких примесей можно очистить кровь посредством диализа?
- 2. Чем можно вызвать пептизацию осадка? Какими свойствами должен обладать осадок, чтобы его можно было пептизировать?
 - 3. Какое практическое применение имеет взаимная коагуляция золей?
- 4.В чем проявляется особенность коагуляции золей под действием смеси электролитов? Приведите пример антагонизма ионов в организме.

(поливиниловый спирт, декстран, желатин и др.). По разному модифицированную целлюлозу применяют для изготовления бинтов и ваты с кровоостанавливающими и антимикробными свойствами.

Для успешного применения полимеров в медицинской практике, исключения их побочного действия, лучшей адаптации их к действиям биологической среды важно знать как физико-химические свойства используемых полимеров, так и биополимеров нашего организма.

<u>Цель занятия:</u> Формирование системных знаний о закономерностях процесса растворения ВМС, свойствах их растворов и роли в жизнедеятельности организма; приобретение навыков экспериментального определения величины набухания и изоэлектрической точки белков.

К занятию необходимо:

1. ИЗУЧИТЬ следующие программные вопросы: Высокомолекулярные соединения (ВМС). Классификация ВМС. Химическое строение и пространственная форма макромолекул. Типы связей в полимерах. Механизм набухания и растворения ВМС. Влияние различных факторов на степень набухания. Вязкость растворов ВМС. Уравнение Штаудингера. Вязкость крови и других биологических жидкостей. Полиэлектролиты, изоэлектрическая точка и методы её измерения- Коллигативные свойства растворов ВМС. Уравнение Галлера.

Устойчивость растворов ВМС. Застудневание. Высаливание ВМС. Коацервация. Свойства студней: синерезис и тиксотропия.

2.ПОДГОТОВИТЬСЯ к выполнению учебно-исследовательской работы.

Литература:

/2/, гл. 13; /3/ гл. 10 (10.1); /4/ гл. 29; /5/, часть 2, гл. V-VI.

Учебно-исследовательская работа (УИРС):

"Влияние рН и электролитов на величину набухания желатина".

<u>Задание 1.</u> Изучение влияния рН на величину набухания и определение изоэлектрической точки желатина.

Выполнение эксперимента:

- 1. В 3 пробирки внесите по 0,5г порошка желатина. С помощью полоски миллиметровой бумаги измерьте высоту слоя сухого желатина (h_0) .
- 2. В пробирки налейте соответственно: в первую 6 мл 0,1М HC1; во вторую 6 мл 0,1 М NaOH; в третью 3 мл 0,1 М CH₃COOH (K=l,8 10^{15}) и 3 мл 0,1 М CH₃COOHa.
 - 3. Содержимое пробирок перемешайте и оставьте на 20 мин.
- 4. Через 20 мин измерьте высоту слоя набухшего желатина (h), рассчитайте степень набухания и рН растворов.
 - 5. Результаты измерений занесите в таблицу.
- 6. Объясните наблюдаемую зависимость степени набухания желатина от pH.